Skip to main content
Log in

Photoluminescence Study of Silver Nano-hexagons

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Silver nano-hexagons have been prepared through the reduction of silver ions by ethylene glycol with poly (vinyl pyrrolidone) (PVP) as a capping agent or stabilizing agent. The morphology and structure of these nano-hexagons have been investigated using high-resolution transmission electron microscopy (HRTEM). The X-ray diffraction study shows that the nanoparticles are crystalline in nature and mainly composed of face-centered cubic (fcc) silver, and from Scherer equation, the average size has been calculated as 45 nm (approx), whereas HRTEM image shows that the average size of silver nano-hexagons is 50 nm. Further, high-performance liquid chromatography (HPLC) study reveals the monodispersity of the nanoparticles, which matches well with the narrow size distribution as observed in TEM analysis. UV/Vis study gives an absorption peak at 410 nm due to surface plasmon resonance (SPR), whereas photoluminescence (PL) spectra of silver nano-hexagons show an emission peak at 490 nm, when excited at 390 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, New York

    Book  Google Scholar 

  2. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264

    Article  CAS  Google Scholar 

  3. Kreibig U, Genzel L (1987) Optical absorption of small metallic particles. Surf Sci 156:678–700

    Article  Google Scholar 

  4. Smitha SL, Nissamudeen KM, Philip D, Gopchandran KG (2008) Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochim Acta A 71:186–190

    Article  CAS  Google Scholar 

  5. Link S, El-Sayed M (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453

    Article  CAS  Google Scholar 

  6. Haldar KK, Sen T, Mandal S, Patra A (2012) Photophysical properties of Au‐CdTe hybrid nanostructures of varying sizes and shapes. ChemPhysChem 13:3989–3996

    Article  CAS  Google Scholar 

  7. Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272:1924

    Article  CAS  Google Scholar 

  8. Liu X, Huang R, Zhu J (2008) Functional faceted silver nano-hexapods: synthesis, structure characterizations, and optical properties. Chem Mater 20:192

    Article  CAS  Google Scholar 

  9. Das R, Nath SS, Bhattacharjee R (2010) Preparation of linoleic acid capped gold nanoparticles and their spectra. Physica E 43:224–227

    Article  CAS  Google Scholar 

  10. Das R, Nath SS, Bhattacharjee R (2011) Luminescence of copper nanoparticles. J Lumin 131:2703–2706

    Article  CAS  Google Scholar 

  11. Sun YG, Yin YD, Mayers BT, Herricks T, Xia YN (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14:4736–4745

    Article  CAS  Google Scholar 

  12. Birkholz M (2006) Thin film analysis by X-ray scattering. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim

    Google Scholar 

  13. Rogers KD, Daniels P (2002) An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure. Biomaterials 23:2577

    Article  CAS  Google Scholar 

  14. Wilcoxon JP, Martin JE, Provencio P (2001) Optical properties of gold and silver nanoclusters investigated by liquid chromatography. J Chem Phys 115:998–1008

    Article  CAS  Google Scholar 

  15. Wei GT, Liu FK, Wang CRC (1999) Shape separation of nanometer gold particles by size-exclusion chromatography. Anal Chem 71:2085–2091

    Article  CAS  Google Scholar 

  16. Song Y, Jimenez V, McKinney C, Donkers R, Murray RW (2003) Estimation of size for 1–2 nm nanoparticles using an HPLC electrochemical detector of double layer charging. Anal Chem 75:5088–5096

    Article  CAS  Google Scholar 

  17. Wilcoxon JP, Martin JE, Provencio P (2000) Size distributions of gold nanoclusters studied by liquid chromatography. Langmuir 16:9912–9920

    Article  CAS  Google Scholar 

  18. Cako G (2004) Nanostructures and nanomaterials. Imperial College Press, London

  19. Strashko AA, Agranovich VM (2014) To the theory of surface plasmon-polaritons on metals covered with resonant thin films. Opt Commun 332:201–205

    Article  CAS  Google Scholar 

  20. Molina RA, Weinmann D, Jalabert RA (2002) Oscillatory size dependence of the surface plasmon linewidth in metallic nanoparticles. Phys Rev B 65:155427

    Article  Google Scholar 

  21. Mooradian A (1969) Photoluminescence of metals. Phys Rev Lett 22:185

    Article  CAS  Google Scholar 

  22. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217

    Article  CAS  Google Scholar 

  23. Zhang A, Zhanga J, Fang Y (2008) Photoluminescence from colloidal silver nanoparticles. J Lumin 128:1635–1640

    Article  CAS  Google Scholar 

  24. Zhao Y, Jiang Y, Fang Y (2006) Spectroscopy property of Ag nanoparticles. Spectrochim Acta A 65:1003–1006

    Article  Google Scholar 

  25. Yeshchenko OA, Dmitruk IM, Alexeenko AA, Losytskyy MY, Kotko AV, Pinchuk AO (2009) Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica. Phys Rev B 79:235438

    Article  Google Scholar 

  26. Philip D (2008) Synthesis and spectroscopic characterization of gold nanoparticles. Spectrochim Acta A 71:80–85

    Article  Google Scholar 

  27. Hu H, Duan H, Yang JKW, Shen ZX (2012) Plasmon-modulated photoluminescence of individual gold nanostructures. ACS Nano 6:10147–10155

    Article  CAS  Google Scholar 

  28. Reisfeld R, Saraidarov T, Levchenko V (2008) Formation and structural characterization of silver nanoparticles in ormosil sol–gel films. Opt Appl XXXVIII:1

    Google Scholar 

  29. Das R, Sarkar S (2015) Optical properties of silver nano-cubes. Opt Mater 48:203–208

    Article  CAS  Google Scholar 

  30. Shasmal N, Karmakar B (2015) Localized surface plasmon absorption and photoluminescence of in situ-generated nano silver in a novel chloroborosilicate glass and glass ceramics. Plasmonics 10:191–202

    Article  CAS  Google Scholar 

  31. Lin A, Son DH, Ahn IH, Song GH, Han WT (2007) Surface plasmon polariton beam focusing with parabolic nanoparticle chains. Opt Express 6576:10

    Google Scholar 

  32. Nandhikonda P, Begaye MP, Cao Z, Heagy MD (2010) Frontier molecular orbital analysis of dual fluorescent dyes: predicting two-color emission in N-aryl-1,8-naphthalimides. Org Biomol Chem 8:3195–3201

    Article  CAS  Google Scholar 

  33. Nandhikonda P, Begaye MP, Cao Z, Heagy MD (2009) Discovery of dual fluorescent 1, 8-naphthalimide dyes based on balanced seesaw photophysical model. Chem Commun 4941:4941–4943

    Article  Google Scholar 

  34. Wilcoxon JP, Martin JE, Parsapour F, Wiedenman B, Kelley DF (1998) Photoluminescence from nanosize gold clusters. J Chem Phys 108:9137–9143

    Article  CAS  Google Scholar 

  35. Boyd GT, Yu ZH, Shen YR (1982) Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys Rev B 33:7923–7936

    Article  Google Scholar 

  36. Liao H, Wen W, Wong GKL (2006) Photoluminescence from Au nanoparticles embedded in Au:oxide composite films. J Opt Soc Am 25:2518–2521

    Article  Google Scholar 

  37. Das R, Nath SS, Bhattacharjee R (2011) Synthesis of linoleic acid capped copper nanoparticles and their fluorescence study. J Fluoresc 21:1165–1170

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the SAIF, NEHU, Shillong, India, for conducting the TEM analysis; Mr. Ratan Boruah, T.A., Department of Physics, Tezpur University, Assam, India, for the XRD study; and Dr. Gautam Gope, S.O., CIL, Assam University, Silchar, India, for the assistance during the HPLC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratan Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Das, R. Photoluminescence Study of Silver Nano-hexagons. Plasmonics 11, 551–556 (2016). https://doi.org/10.1007/s11468-015-0082-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0082-4

Keywords

Navigation