Skip to main content
Log in

New Approach of Plasmonically Induced Reflectance in a Planar Metamaterial for Plasmonic Sensing Applications

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We theoretically demonstrate and investigate plasmonically induced reflectance (PIR) in a new planar metamaterial with two completely different approaches. Here, we not only show that broken symmetry is a general strategy to create electromagnetically induced reflectance (EIR)-like effect but also demonstrate that the nanoplasmonic EIR can be realized even without broken symmetry via the excitation of the higher-order plasmonic modes in the same designed planar metamaterial. In nanophotonics, plasmonic structures enable large field strengths within small mode volumes. Therefore, combining EIR with nanoplasmonics would open up the way toward ultracompact sensors with extremely high sensitivity. In the second approach of creating the PIR of our proposed nanostructure, the restrictions on size are partially relaxed, making fabrication much easier. Their interactions and coupling between plasmonic modes are investigated in detail by analyzing field distributions and spectral responses. Also, we show that the PIR frequency position depended very sensitively on the dielectric surrounding. Furthermore, the narrow and fully modulated PIR features due to the extraordinary reduction of damping may serve for designing novel devices in the field of chemical and biomedical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler, Hirscher M, Sonnichsen C, Giessen H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103–1107

    Article  CAS  Google Scholar 

  2. Wu C, Khanikaev AB, Shvets G (2011) Broadband slow light metamaterial based on a double-continuum fano resonance. Phys Rev Lett 106:107403

    Article  Google Scholar 

  3. Tassin P, Zhang L, Koschny T, Economou E, Soukoulis C (2009) Low-loss metamaterials based on classical electromagnetically induced transparency. Phys Rev Lett 102:053901

    Article  CAS  Google Scholar 

  4. Papasimakis N, Fedotov V, Zheludev N, Prosvirnin S (2008) Metamaterial analog of electromagnetically induced transparency. Phys Rev Lett 101:253903

    Article  CAS  Google Scholar 

  5. Liu N, Langguth L, Weiss T, Kastel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8:758–762

    Article  CAS  Google Scholar 

  6. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101(4):047401

    Article  Google Scholar 

  7. Lukyanchuck B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715

    Article  Google Scholar 

  8. Kekatpure RD, Barnard E S, Cai W, Brongersma M L (2010) Phase-coupled plasmon-induced transparency. Phys Rev Lett 104:243902

    Article  Google Scholar 

  9. Artar A, Yanik AA, Altug H (2011) Directional double Fano resonances in plasmonic hetero-oligomers. Nano Lett 11:3694–3700

    Article  CAS  Google Scholar 

  10. Artar A, Yanik AA, Altug H (2011) Multispectral plasmon induced transparency in coupled meta-atoms. Nano Lett 11:1685–1689

    Article  CAS  Google Scholar 

  11. Liu N, Hentschel M, Weiss T, Alivisatos AP, Giessen H (2011) Three-dimensional plasmon rulers. Science 332:1407–10

    Article  CAS  Google Scholar 

  12. Sheikholeslami S, Garcia-Etxarri A, Dionne JA (2011) Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances. Nano Lett 11:3927–3934

    Article  CAS  Google Scholar 

  13. Yannopapas V, Paspalakis E, Vitanov NV (2009) Electromagnetically induced transparency and slow light in an array of metallic nanoparticles. Phys Rev B 80:035104

    Article  Google Scholar 

  14. Lu Y, Xu H, Rhee JY, Jang WH, Ham B S, Lee YP (2010) Magnetic plasmon resonance: underlying route to plasmonic electromagnetically induced transparency in metamaterial. Phys Rev B 82:195112

    Article  Google Scholar 

  15. Jin X R, Lu YH, Zheng HY, Lee YP, Lee JY, Jang WH (2010) Plasmonic electromagnetically-induced transparency in symmetric structures. Opt Express 18:13396

    Article  CAS  Google Scholar 

  16. Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov VV, Dorpe PV, Nordlander P, Maier SA (2009) Fano resonances in individual coherent plasmonic nanocavities. Nano Lett 9:1663–1667

    Article  CAS  Google Scholar 

  17. Ham BS (2008) Observations of delayed all-optical routing in a slow-light regime. Phys Rev A 78:011808(R)

    Article  Google Scholar 

  18. Novotny L (2007) Effective wavelength scaling for optical antennas. Phys Rev Lett 98:266802

    Article  Google Scholar 

  19. Vafapour Z, Zakery A (2015) New regime of plasmonically induced transparency. Plasmonics. doi:10.1007/s11468-015-9992-4

  20. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  21. Ordal MA, et al. (1983) Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Opt 22:1099–1119

    Article  CAS  Google Scholar 

  22. He XJ, Wang L, Wang JM, Tian XH, Jiang JX, Geng ZX (2013) Electromagnetically induced transparency in planar complementary metamaterial for refractive index sensing applications. J Phys D: Appl Phys 46(36):365302

    Article  Google Scholar 

  23. Dong ZD, Liu H, Cao JX, Li T, Wang SM, Zhu SN, Zhang X (2010) Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials. Appl Phys Lett 97:114101

    Article  Google Scholar 

  24. Chen CY, Un I W, Tai NH, Yen TJ (2009) Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance. Opt Express 17:15372

    Article  CAS  Google Scholar 

  25. Weiss T, Granet G, Gippius NA, Tikhodeev SG, Giessen H (2009) Matched coordinates and adaptive spatial resolution in the fourier modal method. Opt Express 17 (10):8051–8061

    Article  CAS  Google Scholar 

  26. Tikhodeev SG, Yablonskii AL, Muljarov EA, Gippius NA, Ishihara T (2002) Quasiguided modes and optical properties of photonic crystal slabs. Phys Rev B 66:045102

    Article  Google Scholar 

  27. Stephen DG (2011) Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. Synthesis Lect Comput Electromagn 6(1):1–250. doi:10.2200/S00316ED1V01Y201012CEM027

    Article  Google Scholar 

  28. Han S, Singh R, Cong L, Yang H (2015) Engineering the fano resonance and electromagnetically induced transparency in near-fild coupled bright and dark metamaterial. J Phys D Appl Phys 48(3):035104

    Article  Google Scholar 

  29. Burresi M, Oosten DV, Kampfrath T, Schoenmaker H, Heideman R, Leinse A, Kuipers L (2009) Probing the magnetic field of light at optical frequencies. Science 326:550

    Article  CAS  Google Scholar 

  30. Cai W, Shalaev V (2010) Optical metamaterials fundamentals and application. Springer, London: Springer New York Dordrecht Heidelberg, pp 157

  31. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Z. Vafapour would like to express her special thanks to Dr. M. R. Forouzeshfard for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zakery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vafapour, Z., Zakery, A. New Approach of Plasmonically Induced Reflectance in a Planar Metamaterial for Plasmonic Sensing Applications. Plasmonics 11, 609–618 (2016). https://doi.org/10.1007/s11468-015-0077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0077-1

Keywords

Navigation