Skip to main content
Log in

Effect of Semiconductor on Sensitivity of a Graphene-Based Surface Plasmon Resonance Biosensor

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this theoretical study, the effect of semiconductor on sensitivity of a graphene-based surface plasmon resonance (SPR) biosensor has been presented. Different semiconductors such as silicon (Si), germanium (Ge) and wurtzite III-V nitrides (AlN, GaN and InN) have been placed in between active silver (Ag) metal and graphene layer. Our simulation result shows that addition of semiconductor layer enhances the sensitivity by a factor of 3.76, 2.19, 3.82, 3.94 and 4.17 respectively for Si, Ge, InN, GaN and AlN. Also, we have examined the field enhancement factor due to above semiconductors and found maximum field intensity enhancement for the case of AlN. The analysis shows that best performance is achieved for red He-Ne laser light when optimized thicknesses of silver, AlN and graphene layer are 55, 14 and 0.34 nm (monolayer of graphene), respectively. More specifically, AlN would be a better choice for biosensing application in SPR biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nylander C, Liedberg CB, Lind T (1982) Gas detection by means of surface plasmons resonance. Sensors Actuators 3:79–88

    Article  CAS  Google Scholar 

  2. Liedberg B, Nylander C, Lundstrom I (1995) Biosensing with surface plasmon resonance—how it all started. Biosens Bioelectron 10:i–ix

    Article  CAS  Google Scholar 

  3. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B Chem 54(1-2):3–15

    Article  CAS  Google Scholar 

  4. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539

    Article  CAS  Google Scholar 

  5. Van Regenmortel MH, Altschuh D, Chatellier J, Christensen L, Rauffer-Bruyere N, Richalet-Secordel P, Witz J, Zeder-Lutz G (1998) Measurement of antigen-antibody interactions with biosensors. J Mol Recognit 11:163–167

    Article  Google Scholar 

  6. Johnsson B, Lofas S, Lindquist G (1991) Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem 198(2):268–277

    Article  CAS  Google Scholar 

  7. Thiel AJ, Frutos AG, Jordan CE, Corn RM, Smith LM (1997) In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces. Anal Chem 69(24):4948–4956

    Article  CAS  Google Scholar 

  8. Zalevsky Z, Abdulhalim I (2014) Integrated nanophotonic devices. Elsevier. pp. 221

  9. Jorgenson RC, Yee SS (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sensors Actuators B Chem 12:213–220

    Article  CAS  Google Scholar 

  10. Srivastava SK, Verma R, Gupta BD (2011) Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol. Sensors Actuators B Chem 153:194–198

    Article  CAS  Google Scholar 

  11. Choi SH, Kim YL, Byun KM (2011) Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt Express 19(2):458–466

    Article  CAS  Google Scholar 

  12. Wu L, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–14400

    Article  CAS  Google Scholar 

  13. Zhu XM, Lin PH, Ao P, Sorensen LB (2002) Surface treatments for surface plasmon resonance biosensors. Sensors Actuators B Chem 84(2-3):106–112

    Article  CAS  Google Scholar 

  14. Szunerits S, Maalouli N, Wijaya E, Vilcot JP, Boukherroub R (2013) Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces. Anal Bioanal Chem 405(5):1435–1443

    Article  CAS  Google Scholar 

  15. Song B, Li D, Qi WP, Elstner M, Fan CH, Fang HP (2010) Graphene on Au(111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification. ChemPhysChem 11(3):585–589

    Article  CAS  Google Scholar 

  16. Verma R, Gupta BD, Jha R (2011) Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sensors Actuators B Chem 160(1):623–631

    Article  CAS  Google Scholar 

  17. Kai-Qun KL, Lai-Ming W, Dou-Guo Z, Rong-Sheng Z, Pei W, Yong-Hua L, Hai M (2007) Temperature effects on prism-based surface plasmon resonance sensor. Chin Phys Lett 24(11):3081

    Article  Google Scholar 

  18. Jewett SA, Makowski MS, Andrews B, Manfra MJ, Ivanisevic A (2012) Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides. Actabiomaterialia 8(2):728–733

    CAS  Google Scholar 

  19. Maier SA (2007) Plasmonics: fundamentals and applications. Springer

  20. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin

    Google Scholar 

  21. Hansen WN (1968) Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium. JOSA 58(3):380–388

    Article  Google Scholar 

  22. Born M, Wolf E (1964) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Pergamon Press, Oxford

    Google Scholar 

  23. Zhan T, Shi X, Dai Y, Liu X, Zi J (2013) Transfer matrix method for optics in graphene layers. J Phys Condens Matter 25(21):215301

    Article  Google Scholar 

  24. Mohanty G, Sahoo BK, Akhtar J (2014) Comparative analysis for reflectivity of graphene based SPR biosensor. Opt Quant Electron 1–8

  25. SCHOTT optical glass data sheets 2012-12-04

  26. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  27. Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94:031901

    Article  Google Scholar 

  28. Aspnes DE, Studna AA (1983) Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys Rev B 27:985–1009

    Article  CAS  Google Scholar 

  29. Pastrnak J, Roskovcova L (1966) Refraction index measurements on AlN single crystals. Phys Status Solidi 14:K5–K8

    Article  CAS  Google Scholar 

  30. Barker AS Jr, Ilegems M (1973) Infrared lattice vibrations and free-electron dispersion in GaN. Phys Rev B 7:743–750

    Article  CAS  Google Scholar 

  31. Zubrilov A, Levinshtein ME, Rumyantsev SL, Shur MS (2001) Properties of advanced semiconductor materials GaN, AlN, InN, BN, SiC, SiGe. John Wiley & Sons, Inc., New York, pp 49–66

    Google Scholar 

  32. Hale GM, Querry MR (1973) Optical constants of water in the 200-nm to 200-μm wavelength region. Appl Opt 12:555–563

    Article  CAS  Google Scholar 

  33. Ong BH, Yuan X, Tjin SC (2006) Bimetallic silver-gold film waveguide surface plasmon resonance sensor. In Integrated Optoelectronic Devices (pp. 61230B-61230B). International Society for Optics and Photonics

Download references

Acknowledgments

This work is supported by N.I.T Raipur under M.H.R.D Fellowship Scheme, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goutam Mohanty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, G., Akhtar, J. & Sahoo, B.K. Effect of Semiconductor on Sensitivity of a Graphene-Based Surface Plasmon Resonance Biosensor. Plasmonics 11, 189–196 (2016). https://doi.org/10.1007/s11468-015-0033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0033-0

Keywords

Navigation