Skip to main content
Log in

Plasmonic Bandgap in 1D Metallic Nanostructured Devices

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This research work reports the excitation of surface plasmon polaritons (SPPs) in a 1D grating device in a gold film on glass substrate. Various grating structures have been modelled using finite element analysis (FEA) in comsol RF module. The periodicity in such devices remains constant, whereas slit width is changed for each structure. We have studied the effects of slit width on SPP resonances and formation of the plasmonic bandgap. The trend shows that bandgap energy increases with increasing slit width and reaches a maximum value for slit width nearly equal to half of the periodicity in the grating structure and then decreases which is a new and important observation. The possible reason for this optimum value of the slit width corresponds to the absence of higher plasmonic modes and the sinusoidal nature of the slit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Special issue on photonic band gaps (1993). J Opt Soc Am B 10

  2. Special issue on photonic band structures (1994) J Mod Opt 41

  3. Yablonavitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059–2062

    Article  Google Scholar 

  4. John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58:2486–2489

    Article  CAS  Google Scholar 

  5. Yablonavitch E (1993) Photonic band-gap structures. J Opt Soc Am 10:283–295

    Article  Google Scholar 

  6. Sievenpiper D, Zhang L, Broas RFJ, Alexopolous NG, Yablonovitch E (1999) High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans Microwave Theory Tech 47:2059–2074

    Article  Google Scholar 

  7. Joannopoulos JD, Meade RD, Winn JN (1995) Photonic crystals, Princeton University Press

  8. Bowden CM, Dowling JP, Everitt HO (1993) Development and applications of materials exhibiting photonic band gaps. J Opt Soc Am B 10:280–282

    Google Scholar 

  9. Special Issue on Electromagnetic Crystal Structures, Designs, Synthesis, and Applications (1999) IEEE Trans Microwave Theory Tech 47:2057–2150

    Article  Google Scholar 

  10. Ho KM, Chan CT, Soukoulis CM (1990) Existence of a photonic gap in periodic dielectric structures. Phys Rev Lett 65:3152–3155

    Article  CAS  Google Scholar 

  11. Chang CC, Qian Y, Itoh T (2003) Analysis and applications of uniplanar compact photonic band gap structures. Prog Electromagn Res 41:211–235

    Article  Google Scholar 

  12. Wu CK, Wu HS, Tzuang CKC (1999) Electric–magnetic–electric slowwave microstrip line and bandpass filter of compressed size. IEEE Trans Microwave Theory Tech 50:1996–2004

    Google Scholar 

  13. Lim JS, Kim CS, Park JS, Ahn D, Nam S (2000) Design of 10 dB 90° branch line coupler using microstrip line with defected ground structure. Electron Lett 36:1784–1785

    Article  Google Scholar 

  14. Chang I, Lee B (2002) Design of defected ground structures for harmonic control of active microstrip antenna. IEEE Antennas Propag Mag 2:852–855

    Google Scholar 

  15. Radisic V, Qian Y, Coccioli R, Itoh T (1998) Novel 2-D photonic bandgap structure for microstrip lines. IEEE Microwave Guid Wave Lett 8:69–71

    Article  Google Scholar 

  16. Caloz C, Itoh T (2005) Electromagnetic metamaterials: transmission line theory and microwave applications, Wiley

  17. Barnes WL, Preist TW, Kitson SC, Sambles JR (1996) Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Phys Rev B 54:6227–6244

    Article  CAS  Google Scholar 

  18. Agranovitch VM, Mills DL (1982) Surface polaritons. North-Holland, Amsterdam

  19. Ritchie RH, Arakawa ET, Hamrn RH (1968) Surface plasmon resonance effect in grating diffraction. Phys Rev Lett 2:1530–1533

    Article  Google Scholar 

  20. Chen YJ, Koteles ES, Seymor RJ, Sonek GJ, Ballantyne JM (1983) One-dimensional long-range plasmonic-photonic structures. Solid State Commun 46:95–99

    Article  Google Scholar 

  21. Heitmann D, Kroo N, Schulz C, Szentirmay Z (1987) Dispersion anomalies of surface plasmons on corrugated metal-insulator interfaces. Phys Rev B 35:2660–2666

    Article  CAS  Google Scholar 

  22. Knoll W, Philpott MR, Swalen JD, Girlando A (1982) Surface plasmon enhanced Raman spectra of monolayer assemblies. J Chem Phys 77:2254–2260

    Article  CAS  Google Scholar 

  23. Nash DJ, Cotter NPK, Wood EL, Bradberry GW, Sambles JR (1995) Examination of the +1, −1 surface plasmon mini-gap on a gold grating. J Mod Opt 42:243–248

    Article  Google Scholar 

  24. Karademir E, Balci S, Kocabas C, Aydinli A (2014) Plasmonic band gap engineering of plasmon–exciton coupling. Opt Lett 39:5697–5700

    Article  CAS  Google Scholar 

  25. Watanabe H, Honda M, Yamamoto N (2014) Size dependence of band-gas in a one-dimensional plasmonic crystal. Opt Express 22:5155–5165

    Article  Google Scholar 

  26. Saito H, Yamamoto N (2015) Size dependence of bandgaps in a two-dimensional plasmonic crystal with a hexagonal lattice. Opt Express 23:2524–2540

    Article  Google Scholar 

  27. Yamamoto N, Saito H (2014) Size dependence of band structures in a two-dimensional plasmonic crystal with a square lattice. Opt Express 22:29761–29777

    Article  Google Scholar 

  28. Constant TJ, Vukusic P, Hibbins AP, Sambles JR (2015) Surface plasmons at the Brillouin zone boundary of an oblique lattice. Appl Phys Lett 106:091106–091109

    Article  Google Scholar 

  29. Chulia-Jordan R, Unger A (2015) Comparison of the different bandgap cavities in a metallic four-mode plasmonic structure. Plasmonics 10:429–438

    Article  CAS  Google Scholar 

  30. Iliev I, Nedelchev M, Markov E (2015) A novel 2D Z-shaped electromagnetic bandgap structure. Appl Phys Lett 5:760–763

    Google Scholar 

  31. Kitson SC, Barnes WL, Sambles JR (1996) Full photonic band gap for surface modes in the visible. Phys Rev Lett 77:2670–2672

    Article  CAS  Google Scholar 

  32. Bouillard JS et al (2010) Optical transmission of periodic annular apertures in metal film on high refractive index substrate: the role of the nanopillar shape. Appl Phys Lett 96:201101–201103

    Article  Google Scholar 

  33. Raether H (1988) Surface-plasmons on smooth and rough surfaces and on gratings. Springer-Verlag Berlin

  34. Koev ST, Agrawal A, Lezec HJ, Aksyuk VA (2012) An efficient large-area grating coupler for surface plasmon polaritons. Plasmonics 7:269–277

    Article  CAS  Google Scholar 

  35. Fischer B, Fischer TM, Knoll W (1994) Dispersion of surface-plasmons in rectangular, sinusoidal, and incoherent silver gratings. J Appl Phys 75:1577–1581

    Article  CAS  Google Scholar 

  36. Connor DPO (2010) Modelling of nano-optic light delivery mechanisms for use in high-density data storage, Ph.D. thesis, The Queen's University of Belfast, Belfast, United Kingdom.

  37. Multiphysics C (2008) User guide: RF module

  38. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New- York

    Google Scholar 

  39. Palik ED (1985) Handbook of optical constants of solids. Academic Press, Inc, London

    Google Scholar 

  40. Stern EA, Ferrell RA (1960) Surface plasma oscillations of a degenerate electron gas. Phys Rev 120:130–136

    Article  Google Scholar 

  41. Sommerfeld A (1899) Ueber die Fortpflanzung elektrodynamischer Wellen l ngs eines Drahtes. Ann Phys 303:233–290

    Article  Google Scholar 

  42. Zenneck J (1907) Über die Fortpflanzung ebener elektromagnetischer Wellen l ngs einer ebenen Leiterfl che und ihre Beziehung zur drahtlosen Telegraphie. Ann Phys 23:846–866

    Article  Google Scholar 

  43. Ritchie RH, Arakawa ET, Cowan JJ, Hamm RN (1968) Surface-plasmon resonance effect in grating diffraction. Phys Rev Lett 21:1530–1533

    Article  CAS  Google Scholar 

  44. Billaudeau C, Collin S, Pardo F, Bardou N, Pelouard JL (2009) Tailoring radiative and nonradiative losses of thin nanostructured plasmonic waveguides. Opt Express 17:3490–3499

    Article  CAS  Google Scholar 

  45. Zakharian AR, Moloney JV, Mansuripur M (2007) Surface plasmon polaritons on metallic surfaces. Opt Express 15:183–197

    Article  Google Scholar 

  46. Hessel A, Oliner AA (1965) A new theory of Wood’s anomalies on optical gratings. Appl Opt 4:1275–1297

    Article  Google Scholar 

  47. Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82:2257–2298

    Article  CAS  Google Scholar 

  48. Genet C, Van Exter MP, Woerdman JP (2003) Fano-type interpretation of redshifts and red tails in hole array transmission spectra. Opt Commun 225:331–336

    Article  CAS  Google Scholar 

  49. Mills DL (1977) Interaction of surface-polaritons with periodic surface structures rayleigh waves and gratings. Phys Rev B 15:3097–3118

    Article  Google Scholar 

  50. Barnes WL, Preist TW, Kitson SC, Sambles JR, Cotter NPK, Nash DJ (1995) Photonic gaps in the dispersion of surface-plasmons on gratings. Phys Rev B 51:11164–11167

    Article  CAS  Google Scholar 

  51. Porto JA, Garcia Vidal FJ, Pendry JB (1999) Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett 83:2845–2848

    Article  CAS  Google Scholar 

  52. Ropers C, Park DJ, Stibenz G, Steinmeyer G, Kim J, Kim DS, Lienau C (2005) Femtosecond light transmission and subradiant damping in plasmonic crystals. Phys Rev Lett 94:113901–113904

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Javaid or Tahir Iqbal.

Additional information

Muhammad Javaid and Tahir Iqbal contributed equally to this work.

We dedicate this research work to Mr. Muhammad Imran Ch, Lecturer in Physics, University of Gujrat, Gujrat, for his valuable services for this department.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javaid, M., Iqbal, T. Plasmonic Bandgap in 1D Metallic Nanostructured Devices. Plasmonics 11, 167–173 (2016). https://doi.org/10.1007/s11468-015-0025-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0025-0

Keywords

Navigation