Skip to main content
Log in

Facile Synthesis of Size-Tunable Silver Nanoparticles by Heteroepitaxial Growth Method for Efficient NIR SERS

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We report a rapid and facile method to synthesize highly monodispersed silver nanoparticles (AgNP) by heteroepitaxial growth method using gold seed particles (size ~2 nm). Silver was deposited on gold seed particles by Tollen’s reaction. The presence of seed particles provided good control on the morphology and size distribution of AgNP, achieving the standard deviation in size ≤11 %. The real-time kinetics of AgNP formation revealed that the presence of gold seed particles increased the reaction rate by 7-fold compared to seedless approach. The size and extinction maxima of AgNP were tunable by varying the gold seed particles to silver molar ratio. This new heteroepitaxial growth method of AgNP synthesis is simple, fast (completing the reaction within 3 min), and eco-friendly to yield monodispersed nanoparticles. Further, these AgNP were used to develop efficient surface-enhanced Raman scattering (SERS) substrates for sensing applications which showed good repeatability and significantly improved enhancement factors in the near-infrared (NIR) region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  2. Zheng X, Guo D, Shao Y, Jia S, Xu S, Zhao B, Xu W, Corredor C, Lombardi JR (2008) Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor. Langmuir 24:4394–4398

    Article  CAS  Google Scholar 

  3. Sanles-Sobrido M, Rodriguez-Lorenzo L, Lorenzo-Abalde S, Gonzalez-Fernandez A, Correa-Duarte MA, Alvarez-Puebla RA, Liz-Marzan LM (2009) Label-free SERS detection of relevant bioanalytes on silver-coated carbon nanotubes: the case of cocaine. Nanoscale 1:153–158

    Article  CAS  Google Scholar 

  4. Senapati D, Dasary SSR, Singh AK, Senapati T, Yu H, Ray PC (2011) A label-free gold-nanoparticle-based SERS assay for direct cyanide detection at the parts-per-trillion level. Chem Euro J 17:8445–8451

    Article  CAS  Google Scholar 

  5. Tharion J, Satija J, Mukherji S (2014) Glucose mediated synthesis of gold nanoshells: a facile and eco-friendly approach conferring high colloidal stability. RSC Adv 4:3984–3991

    Article  CAS  Google Scholar 

  6. Kim K, Ryoo H, Shin KS (2010) Adsorption and aggregation characteristics of silver nanoparticles onto a poly(4-vinylpyridine) film: a comparison with gold nanoparticles. Langmuir 26:10827–10832

    Article  CAS  Google Scholar 

  7. Dendisová-Vyškovská M, Prokopec V, Člupek M, Matějka P (2012) Comparison of SERS effectiveness of copper substrates prepared by different methods: what are the values of enhancement factors? J Raman Spectr 43:181–186

    Article  Google Scholar 

  8. Lu Y, Liu GL, Lee LP (2004) High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett 5:5–9

    Article  Google Scholar 

  9. Wang HH, Liu CY, Wu SB, Liu NW, Peng CY, Chan TH, Hsu CF, Wang JK, Wang YL (2006) Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Adv Mater 18:491–495

    Article  CAS  Google Scholar 

  10. Rycenga M, Camargo PHC, Li W, Moran CH, Xia Y (2010) Understanding the SERS effects of single silver nanoparticles and their dimers, one at a time. J Phys Chem Lett 1:696–703

    Article  CAS  Google Scholar 

  11. Zhou J, Xu S, Xu W, Zhao B, Ozaki Y (2009) In situ nucleation and growth of silver nanoparticles in membrane materials: a controllable roughened SERS substrate with high reproducibility. J Raman Spectr 40:31–37

    Article  CAS  Google Scholar 

  12. Fan M, Brolo AG (2009) Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Phys Chem Chem Phys 11:7381–7389

    Article  CAS  Google Scholar 

  13. Cassar RN, Graham D, Larmour I, Wark AW, Faulds K (2014) Synthesis of size tunable monodispersed silver nanoparticles and the effect of size on SERS enhancement. Vib Spectr 71:41–46

    Article  CAS  Google Scholar 

  14. Stevenson A, Blanco Bea D, Civit S, Antoranz Contera S, Iglesias Cerveto A, Trigueros S (2012) Three strategies to stabilise nearly monodispersed silver nanoparticles in aqueous solution. Nanoscale Res Lett 7:1–8

    Article  Google Scholar 

  15. Quang Huy T, Van Quy N, Anh-Tuan L (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotech 4:033001

    Article  Google Scholar 

  16. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  17. Dadosh T (2009) Synthesis of uniform silver nanoparticles with a controllable size. Mater Lett 63:2236–2238

    Article  CAS  Google Scholar 

  18. Ma H, Yin B, Wang S, Jiao Y, Pan W, Huang S, Chen S, Meng F (2004) Synthesis of silver and gold nanoparticles by a novel electrochemical method. Chem Phys Chem 5:68–75

    CAS  Google Scholar 

  19. Jiang L-P, Wang A-N, Zhao Y, Zhang J-R, Zhu J-J (2004) A novel route for the preparation of monodisperse silver nanoparticles via a pulsed sonoelectrochemical technique. Inorg Chem Commun 7:506–509

    Article  CAS  Google Scholar 

  20. Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9:852–858

    Article  CAS  Google Scholar 

  21. Hu B, Wang S-B, Wang K, Zhang M, Yu S-H (2008) Microwave-assisted rapid facile “green” synthesis of uniform silver nanoparticles: self-assembly into multilayered films and their optical properties. J Phys Chem C 112:11169–11174

    Article  CAS  Google Scholar 

  22. Pietrobon B, Kitaev V (2008) Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chem Mater 20:5186–5190

    Article  CAS  Google Scholar 

  23. Silvert P-Y, Herrera-Urbina R, Duvauchelle N, Vijayakrishnan V, Elhsissen KT (1996) Preparation of colloidal silver dispersions by the polyol process. Part 1—synthesis and characterization. J Mater Chem 6:573–577

    Article  CAS  Google Scholar 

  24. Kim D, Jeong S, Moon J (2006) Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology 17(16):4019

    Article  CAS  Google Scholar 

  25. Yamamoto M, Kashiwagi Y, Nakamoto M (2006) Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine. Langmuir 22:8581–8586

    Article  CAS  Google Scholar 

  26. Hiramatsu H, Osterloh FE (2004) A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem Mater 16:2509–2511

    Article  CAS  Google Scholar 

  27. Lin XZ, Teng X, Yang H (2003) Direct synthesis of narrowly dispersed silver nanoparticles using a single-source precursor. Langmuir 19:10081–10085

    Article  CAS  Google Scholar 

  28. Steinigeweg D, Schlucker S (2012) Monodispersity and size control in the synthesis of 20–100 nm quasi-spherical silver nanoparticles by citrate and ascorbic acid reduction in glycerol-water mixtures. Chem Commun 48:8682–8684

    Article  CAS  Google Scholar 

  29. Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y (2002) Uniform silver nanowires synthesis by reducing AGNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14:4736–4745

    Article  CAS  Google Scholar 

  30. Zhang Q, Li W, Moran C, Zeng J, Chen J, Wen L-P, Xia Y (2010) Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30–200 nm and comparison of their optical properties. J Am Chem Soc 132:11372–11378

    Article  CAS  Google Scholar 

  31. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  32. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun 7:617–618

    Article  Google Scholar 

  33. Pyatenko A, Yamaguchi M, Suzuki M (2007) Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions. J Phys Chem C 111:7910–7917

    Article  CAS  Google Scholar 

  34. Freeman RG, Hommer MB, Grabar KC, Jackson MA, Natan MJ (1996) Ag-clad Au nanoparticles: novel aggregation, optical, and surface-enhanced Raman scattering properties. J Phys Chem 100:718–724

    Article  CAS  Google Scholar 

  35. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    Article  CAS  Google Scholar 

  36. Lu L, Wang H, Zhou Y, Xi S, Zhang H, Hu J, Zhao B (2002) Seed-mediated growth of large, monodisperse core-shell gold-silver nanoparticles with Ag-like optical properties. Chem Commun 2:144–145

    Article  Google Scholar 

  37. McGilvray KL, Fasciani C, Bueno-Alejo CJ, Schwartz-Narbonne R, Scaiano JC (2012) Photochemical strategies for the seed-mediated growth of gold and gold–silver nanoparticles. Langmuir 28:16148–16155

    Article  CAS  Google Scholar 

  38. Duff DG, Baiker A, Edwards PP (1993) A new hydrosol of gold clusters. 1. Formation and particle size variation. Langmuir 9:2301–2309

    Article  CAS  Google Scholar 

  39. Alexander KD, Hampton MJ, Zhang S, Dhawan A, Xu H, Lopez R (2009) A high-throughput method for controlled hot-spot fabrication in SERS-active gold nanoparticle dimer arrays. J Raman Spectr 40:2171–2175

    Article  CAS  Google Scholar 

  40. Sabatani E, Cohen-Boulakia J, Bruening M, Rubinstein I (1993) Thioaromatic monolayers on gold: a new family of self-assembling monolayers. Langmuir 9:2974–2981

    Article  CAS  Google Scholar 

  41. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712

    Article  CAS  Google Scholar 

  42. Jana NR, Gearheart L, Murphy CJ (2001) Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem Mater 13:2313–2322

    Article  CAS  Google Scholar 

  43. Huang ZY, Mills G, Hajek B (1993) Spontaneous formation of silver particles in basic 2-propanol. J Phys Chem 97:11542–11550

    Article  CAS  Google Scholar 

  44. Dong X, Ji X, Wu H, Zhao L, Li J, Yang W (2009) Shape control of silver nanoparticles by stepwise citrate reduction. J Phys Chem C 113:6573–6576

    Article  CAS  Google Scholar 

  45. Maher R (2012) SERS hot spots. In: Kumar CSR (ed) Raman spectroscopy for nanomaterials characterization. Springer, Berlin, pp 215–260

  46. Félidj N, Aubard J, Lévi G, Krenn JR, Salerno M, Schider G, Lamprecht B, Leitner A, Aussenegg FR (2002) Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering. Phys Rev B 65:075419

    Article  Google Scholar 

  47. Kim K, Kim HS, Park HK (2006) Facile method to prepare surface-enhanced-Raman-scattering-active Ag nanostructures on silica spheres. Langmuir 22:8083–8088

    Article  CAS  Google Scholar 

  48. Park HK, Yoon JK, Kim K (2006) Novel fabrication of Ag thin film on glass for efficient surface-enhanced Raman scattering. Langmuir 22:1626–1629

    Article  CAS  Google Scholar 

  49. Huang J-A, Zhao Y-Q, Zhang X-J, He L-F, Wong T-L, Chui Y-S, Zhang W-J, Lee S-T (2013) Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection. Nano Lett 13:5039–5045

    Article  CAS  Google Scholar 

  50. Li X, Hu H, Li D, Shen Z, Xiong Q, Li S, Fan HJ (2012) Ordered array of gold semishells on TiO2 spheres: an ultrasensitive and recyclable SERS substrate. ACS Appl Mater Inter 4:2180–2185

    Article  CAS  Google Scholar 

  51. Chen L-Y, Yang K-H, Chen H-C, Liu Y-C, Chen C-H, Chen Q-Y (2014) Innovative fabrication of a Au nanoparticle-decorated SiO2 mask and its activity on surface-enhanced Raman scattering. Analyst 139:1929–1937

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Centre for Research in Nanotechnology and Science (CRNTS) and Sophisticated Analytical Instrument Facility (SAIF), IIT Bombay, for FE-TEM and FE-SEM images acquired in support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyo Mukherji.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tharion, J., Satija, J. & Mukherji, S. Facile Synthesis of Size-Tunable Silver Nanoparticles by Heteroepitaxial Growth Method for Efficient NIR SERS. Plasmonics 10, 753–763 (2015). https://doi.org/10.1007/s11468-014-9862-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9862-5

Keywords

Navigation