Skip to main content
Log in

Modulation of charge in C9N4 monolayer for a high-capacity hydrogen storage as a switchable strategy

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Developing advanced hydrogen storage materials with high capacity and efficient reversibility is a crucial aspect for utilizing hydrogen source as a promising alternate to fossil fuels. In this paper, we have systematically investigated the hydrogen storage properties of neutral and negatively charged C9N4 monolayer based on density functional theory (DFT). Our foundings indicate that injecting additional electrons into the adsorbent significantly boosts the adsorption capacity of C9N4 monolayer to H2 molecules. The gravimetric density of negatively charged C9N4 monolayer can reach up to 10.80 wt% when fully covered with hydrogen. Unlike other hydrogen storage methods, the storage and release processes happen automatically upon introducing or removing extra electrons. Moreover, these operations can be easily adjusted through activating or deactivating the charging voltage. As a result, the method is easily reversible and has tunable kinetics without requiring particular activators. Significantly, C9N4 is proved to be a suitable candidate for efficient electron injection/release due to its well electrical conductivity. Our work can serve as a valuable guide in the quest for a novel category of materials for hydrogen storage with high capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Tollefson, Hydrogen vehicles: Fuel of the future, Nature 464(7293), 1262 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. L. Schlapbach and A. Züttel, Hydrogen-storage materials for mobile applications, Nature 414(6861), 353 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. F. Schüth, B. Bogdanović, and M. Felderhoff, Light metal hydrides and complex hydrides for hydrogen storage, Chem. Commun. (Camb.) 2249(20), 2249 (2004)

    Article  Google Scholar 

  4. F. Ding and B. I. Yakobson, Challenges in hydrogen adsorptions: From physisorption to chemisorption, Front. Phys. 6(2), 142 (2011)

    Article  ADS  Google Scholar 

  5. X. Zhou, J. Zhou, and Q. Sun, Tripyrrylmethane based 2D porous structure for hydrogen storage, Front. Phys. 6(2), 220 (2011)

    Article  ADS  Google Scholar 

  6. J. Li, T. Furuta, H. Goto, T. Ohashi, Y. Fujiwara, and S. Yip, Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures, J. Chem. Phys. 119(4), 2376 (2003)

    Article  ADS  CAS  Google Scholar 

  7. P. Jena, Materials for hydrogen storage: Past, present, and future, J. Phys. Chem. Lett. 2(3), 206 (2011)

    Article  CAS  Google Scholar 

  8. L. Wang and R. T. Yang, New sorbents for hydrogen storage by hydrogen spillover–a review, Energy Environ. Sci. 1(2), 268 (2008)

    Article  CAS  Google Scholar 

  9. L. Song, C. Jiang, S. Liu, C. Jiao, X. Si, S. Wang, F. Li, J. Zhang, L. Sun, F. Xu, and F. Huang, Progress in improving thermodynamics and kinetics of new hydrogen storage materials, Front. Phys. 6(2), 151 (2011)

    Article  ADS  Google Scholar 

  10. H. Zhang, X. Li, and Y. Tang, DFT study of dihydrogen interactions with lithium containing organic complexes C4H4-mLim and C5H5-mLim (m = 1,2), Front. Phys. 6(2), 231 (2011)

    Article  ADS  CAS  Google Scholar 

  11. M. Yoon, S. Yang, C. Hicke, E. Wang, D. Geohegan, and Z. Zhang, Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage, Phys. Rev. Lett. 100(20), 206806 (2008)

    Article  ADS  PubMed  Google Scholar 

  12. Q. Sun, P. Jena, Q. Wang, and M. Marquez, First-principles study of hydrogen storage on Li12C60, J. Am. Chem. Soc. 128(30), 9741 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. Y. H. Cheng, C. Y. Zhang, J. Ren, and K. Y. Tong, Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers, Front. Phys. 11(5), 113101 (2016)

    Article  ADS  Google Scholar 

  14. Z. Zhang, J. Li, and Q. Jiang, Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review, Front. Phys. 6(2), 162 (2011)

    Article  ADS  Google Scholar 

  15. Y. Zhao, Y. H. Kim, A. Dillon, M. Heben, and S. Zhang, Hydrogen storage in novel organometallic buckyballs, Phys. Rev. Lett. 94(15), 155504 (2005)

    Article  ADS  PubMed  Google Scholar 

  16. X. K. Kong, Q. W. Chen, and Z. Y. Lun, The influence of N-doped carbon materials on supported Pd: Enhanced hydrogen storage and oxygen reduction performance, ChemPhysChem 15(2), 344 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. S. Li, H. Zhao, and P. Jena, Ti-doped nano-porous graphene: A material for hydrogen storage and sensor, Front. Phys. 6(2), 204 (2011)

    Article  ADS  Google Scholar 

  18. Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, Clustering of Ti on a C60 surface and its effect on hydrogen storage, J. Am. Chem. Soc. 127(42), 14582 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. Y. Zhang and H. Dai, Formation of metal nanowires on suspended single-walled carbon nanotubes, Appl. Phys. Lett. 77(19), 3015 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Q. Fu, L. Yuan, Y. Luo, and J. Yang, Exploring at nanoscale from first principles, Front. Phys. China 4(3), 256 (2009)

    Article  ADS  Google Scholar 

  21. M. Yoon, S. Yang, E. Wang, and Z. Zhang, Charged fullerenes as high-capacity hydrogen storage media, Proc. Natl. Acad. Sci. USA 7(9), 2578 (2007)

    CAS  Google Scholar 

  22. J. Niu, B. Rao, and P. Jena, Binding of hydrogen molecules by a transition-metal ion, Phys. Rev. Lett. 68(15), 2277 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. J. Zhou, Q. Wang, Q. Sun, P. Jena, and X. Chen, Electric field enhanced hydrogen storage on polarizable materials substrates, Proc. Natl. Acad. Sci. USA 107(7), 2801 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. H. Cheng and J. C. Zheng, Ab initio study of anisotropic mechanical and electronic properties of strained carbon-nitride nanosheet with interlayer bonding, Front. Phys. 16(4), 43505 (2021)

    Article  ADS  Google Scholar 

  25. Z. Ma, J. Zhuang, X. Zhang, and Z. Zhou, SiP monolayers: New 2D structures of group IV–V compounds for visible-light photohydrolytic catalysts, Front. Phys. 13(3), 138104 (2018)

    Article  ADS  Google Scholar 

  26. Q. Gao, H. L. Wang, L. F. Zhang, S. L. Hu, and Z. P. Hu, Computational study on the half-metallicity in transition metal–oxide-incorporated 2D g-C3N4 nanosheets, Front. Phys. 13(3), 138108 (2018)

    Article  ADS  Google Scholar 

  27. L. Ju, C. Liu, L. Shi, and L. Sun, The high-speed channel made of metal for interfacial charge transfer in Z-scheme g-C3N4/MoS2 water-splitting photocatalyst, Mater. Res. Express 6(11), 115545 (2019)

    Article  ADS  Google Scholar 

  28. C. He, J. H. Zhang, W. X. Zhang, and T. T. Li, Type-II InSe/g-C3N4 heterostructure as a high-efficiency oxygen evolution reaction catalyst for photoelectrochemical water splitting, J. Phys. Chem. Lett. 10(11), 3122 (2019)

    Article  CAS  PubMed  Google Scholar 

  29. J. Liu, B. Cheng, and J. Yu, A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C3N4/TiO2 heterostructure, Phys. Chem. Chem. Phys. 18(45), 31175 (2016)

    Article  CAS  PubMed  Google Scholar 

  30. G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, and X. Wang, Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution, Adv. Mater. 26(5), 805 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, and X. Wang, Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles, Nat. Commun. 3(1), 1139 (2012)

    Article  ADS  Google Scholar 

  32. X. Ye, Y. Cui, and X. Wang, Ferrocene-modified carbon nitride for direct oxidation of benzene to phenol with visible light, ChemSusChem 7(3), 738 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. J. Zhang, Y. Chen, and X. Wang, Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications, Energy Environ. Sci. 8(11), 3092 (2015)

    Article  CAS  Google Scholar 

  34. S. P. Kaur, T. Hussain, T. Kaewmaraya, and T. J. D. Kumar, Reversible hydrogen storage tendency of light-metal (Li/Na/K) decorated carbon nitride (C9N4) monolayer, Int. J. Hydrogen Energy 48(67), 26301 (2023)

    Article  CAS  Google Scholar 

  35. J. Huang, C. Zhou, and X. Duan, Li decorated C9N4 monolayer as a potential material for hydrogen storage, Int. J. Hydrogen Energy 46(65), 32929 (2021)

    Article  CAS  Google Scholar 

  36. X. Tan, L. Kou, H. A. Tahini, and S. C. Smith, Charge modulation in graphitic carbon nitride as a switchable approach to high-capacity hydrogen storage, ChemSusChem 8(21), 3626 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)

    Article  ADS  Google Scholar 

  38. J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45(23), 13244 (1992)

    Article  ADS  CAS  Google Scholar 

  39. J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)

    Article  ADS  CAS  Google Scholar 

  40. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)

    Article  CAS  PubMed  Google Scholar 

  41. S. Liu, H. Yin, and P. F. Liu, Strain-dependent electronic and mechanical properties in one-dimensional topological insulator Nb4SiTe4, Phys. Rev. B 108(4), 045411 (2023)

    Article  ADS  CAS  Google Scholar 

  42. L. Ju, Y. Ma, X. Tan, and L. Kou, Controllable electrocatalytic to photocatalytic conversion in ferroelectric heterostructures, J. Am. Chem. Soc. 145(48), 26393 (2023)

    Article  CAS  PubMed  Google Scholar 

  43. B. Mortazavi, M. Shahrokhi, A. V. Shapeev, T. Rabczuk, and X. Zhuang, Prediction of C7N6 and C9N4: Stable and strong porous carbon-nitride nanosheets with attractive electronic and optical properties, J. Mater. Chem. C 7(35), 10908 (2019)

    Article  CAS  Google Scholar 

  44. M. Yoon, S. Yang, E. Wang, and Z. Zhang, Charged fullerenes as high-capacity hydrogen storage media, Nano Lett. 7(9), 2578 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Y. Liu, L. Ren, Y. He, and H. P. Cheng, Titanium-decorated graphene for high-capacity hydrogen storage studied by density functional simulations, J. Phys.: Condens. Matter 22(44), 445301 (2010)

    ADS  PubMed  Google Scholar 

  46. L. Bi, Z. Miao, Y. Ge, Z. Liu, Y. Xu, J. Yin, X. Huang, Y. Wang, and Z. Yang, Density functional theory study on hydrogen storage capacity of metal-embedded pentaocta-graphene, Int. J. Hydrogen Energy 47(76), 32552 (2022)

    Article  CAS  Google Scholar 

  47. N. Khossossi, Y. Benhouria, S. R. Naqvi, P. K. Panda, I. Essaoudi, A. Ainane, and R. Ahuja, Hydrogen storage characteristics of Li and Na decorated 2D boron phosphide, Sustain. Energy Fuels 4(9), 4538 (2020)

    Article  CAS  Google Scholar 

  48. S. Haldar, S. Mukherjee, and C. V. Singh, Hydrogen storage in Li, Na and Ca decorated and defective borophene: A first principles study, RSC Adv. 8(37), 20748 (2018)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jing Xue, Wanyi Zhao and Kaiyue Liu for their contributions to the image and text editions. The work was founded by Henan Scientific Research Fund for Returned Scholars, the Young Scientist Project of Henan Province (Grant Eo. 225200810103), the Program for Science & Technology Innovation Talents in Universities of Henan Province (Grant Eo. 24HASTIT013), Henan College Key Research Project (Grant Eo. 24A430002), the Eatural Science Foundation of Henan Province (Grant Eo. 232300420128), the Scientific Research Innovation Team Project of Anyang Eormal University (Grant Eo. 2023AYSYKYCXTD04), and the College Students Innovation Fund of Anyang Normal University (Grant Eo. 202310479077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Ju.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, L., Liu, J., Wang, M. et al. Modulation of charge in C9N4 monolayer for a high-capacity hydrogen storage as a switchable strategy. Front. Phys. 19, 43208 (2024). https://doi.org/10.1007/s11467-023-1385-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1385-0

Keywords

Navigation