Skip to main content
Log in

Magnetic-field-sensitive multi-wave interference

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We report an experimental study of magnetic-field-sensitive multi-wave interference, realized in a three-wave RF-atom system. In the F = 1 hyperfine level of the 87Rb 52S1/2 ground state, Ramsey fringes were observed via the spin-selective Raman detection. A decrease in the fringe contrast was observed with increasing free evolution time. The maximum evolution time for observable fringe contrasts was investigated at different atom temperatures, under free-falling and trapped conditions. As the main interest of the Ramsey method, the improvement in magnetic field resolution is observed with an increase of evolution time T up to 3 ms and with the measurement resolution reaching 0.85 nT. This study paves the way for precision magnetic field measurements based on cold atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. F. Ramsey, A molecular beam resonance method with separated oscillating fields, Phys. Rev. 78(6), 695 (1950)

    Article  ADS  Google Scholar 

  2. T. P. Heavner, E. A. Donley, F. Levi, G. Costanzo, T. E. Parker, J. H. Shirley, N. Ashby, S. Barlow, and S. R. Jefferts, First accuracy evaluation of NIST-F2, Metrologia 51(3), 174 (2014)

    Article  ADS  Google Scholar 

  3. J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, Ruoxin Li, K. Gibble, A. Clairon, and S. Bize, Progress in atomic fountains at LNE-SYRTE, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(3), 391 (2012)

    Article  Google Scholar 

  4. V. Gerginov, N. Nemitz, S. Weyers, R. Schröder, D. Griebsch, and R. Wynands, Uncertainty evaluation of the caesium fountain clock PTB-CSF2, Metrologia 47(1), 65 (2010)

    Article  ADS  Google Scholar 

  5. M. Sadgrove, Y. Eto, S. Sekine, H. Suzuki, and T. Hirano, Ramsey interferometry using the Zeeman sublevels in a spin-2 Bose gas, J. Phys. Soc. Jpn. 82(9), 094002 (2013)

    Article  ADS  Google Scholar 

  6. L. Chen, K. Zhang, Y. Xu, Q. Luo, W. Xu, M. Zhou, and Z. Hu, Multi-wave atom interferometer based on Doppler-insensitive Raman transition, Opt. Express 28(6), 8463 (2020)

    Article  ADS  Google Scholar 

  7. Petrovic, I. Herrera, P. Lombardi, F. Schäfer, and F. S. Cataliotti, A multi-state interferometer on an atom chip, New J. Phys. 15(4), 043002 (2013)

    Article  ADS  Google Scholar 

  8. M. Robert-de-Saint-Vincent, J. P. Brantut, C. J. Bordé, A. Aspect, T. Bourdel, and P. Bouyer, A quantum trampoline for ultra-cold atoms, Europhys. Lett. 89(1), 10002 (2010)

    Article  ADS  Google Scholar 

  9. M. Gustavsson, E. Haller, M. J. Mark, J. G. Danzl, R. Hart, A. J. Daley, and H. C. Nägerl, Interference of interacting matter waves, New J. Phys. 12(6), 065029 (2010)

    Article  ADS  Google Scholar 

  10. M. K. Zhou, K. Zhang, X. C. Duan, Y. Ke, C. G. Shao, and Z. K. Hu, Atomic multiwave interferometer for Aharonov–Casher-phase measurements, Phys. Rev. A 93(2), 023641 (2016)

    Article  ADS  Google Scholar 

  11. G. Di Domenico, H. Saudan, G. Bison, P. Knowles, and A. Weis, Sensitivity of double-resonance alignment magnetometers, Phys. Rev. A 76(2), 023407 (2007)

    Article  ADS  Google Scholar 

  12. S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, Microfabricated atomic clocks and magnetometers, J. Opt. A 8(7), S318 (2006)

    Article  ADS  Google Scholar 

  13. P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, Chip-scale atomic magnetometer, Appl. Phys. Lett. 85(26), 6409 (2004)

    Article  ADS  Google Scholar 

  14. J. Li, W. Quan, B. Zhou, Z. Wang, J. Lu, Z. Hu, G. Liu, and J. Fang, SERF atomic magnetometer–recent advances and applications: A review, IEEE Sens. J. 18(20), 8198 (2018)

    Article  ADS  Google Scholar 

  15. D. Budker and M. Romalis, Optical magnetometry, Nat. Phys. 3(4), 227 (2007)

    Article  Google Scholar 

  16. M. W. Mitchell and S. P. Alvarez, Quantum limits to the energy resolution of magnetic field sensors, Rev. Mod. Phys. 92(2), 021001 (2020)

    Article  ADS  Google Scholar 

  17. W. Zhao, W. Qian, D. Lv, and R. Wei, Improvement of average magnetic field measurement based on magnetic-field-sensitive Ramsey fringes, Opt. Lett. 47(8), 2073 (2022)

    Article  ADS  Google Scholar 

  18. W. Wang, R. Dong, R. Wei, J. Lin, F. Zou, T. Chen, and Y. Wang, Measuring magnetic field vector by stimulated Raman transitions, Appl. Phys. Lett. 108(12), 122401 (2016)

    Article  ADS  Google Scholar 

  19. C. Shi, R. Wei, Z. Zhou, D. Lv, T. Li, and Y. Wang, Magnetic field measurement on 87Rb atomic fountain clock, Chin. Opt. Lett. 8, 549 (2010)

    Article  Google Scholar 

  20. A. Peters, K. Y. Chung, and S. Chu, High-precision gravity measurements using atom interferometry, Metrologia 38(1), 25 (2001)

    Article  ADS  Google Scholar 

  21. Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter, Phys. Rev. A 88(4), 043610 (2013)

    Article  ADS  Google Scholar 

  22. Z. Y. Wang, T. Chen, X. L. Wang, Z. Zhang, Y. F. Xu, and Q. Lin, A precision analysis and determination of the technical requirements of an atom interferometer for gravity measurement, Front. Phys. China 4(2), 174 (2009)

    Article  ADS  Google Scholar 

  23. J. Wang, L. Zhou, R. B. Li, M. Liu, and M. S. Zhan, Cold atom interferometers and their applications in precision measurements, Front. Phys. China 4(2), 179 (2009)

    Article  ADS  Google Scholar 

  24. R. Gautier, M. Guessoum, L. A. Sidorenkov, Q. Bouton, A. Landragin, and R. Geiger, Accurate measurement of the Sagnac effect for matter waves, Sci. Adv. 8(23), eabn8009 (2022)

    Article  Google Scholar 

  25. W. J. Xu, L. Cheng, J. Liu, C. Zhang, K. Zhang, Y. Cheng, Z. Gao, L. S. Cao, X. C. Duan, M. K. Zhou, and Z. K. Hu, Effects of wave-front tilt and air density fluctuations in a sensitive atom interferometry gyroscope, Opt. Express 28(8), 12189 (2020)

    Article  ADS  Google Scholar 

  26. Z. W. Yao, S. B. Lu, R. B. Li, J. Luo, J. Wang, and M. S. Zhan, Calibration of atomic trajectories in a large-area dual-atom-interferometer gyroscope, Phys. Rev. A 97(1), 013620 (2018)

    Article  ADS  Google Scholar 

  27. X. Alauze, A. Bonnin, C. Solaro, and F. P. D. Santos, A trapped ultracold atom force sensor with a µm-scale spatial resolution, New J. Phys. 20(8), 083014 (2018)

    Article  ADS  Google Scholar 

  28. R. Bennett and D. H. J. O’Dell, Revealing short-range non-Newtonian gravity through Casimir–Polder shielding, New J. Phys. 21(3), 033032 (2019)

    Article  ADS  Google Scholar 

  29. P. Wolf, P. Lemonde, A. Lambrecht, S. Bize, A. Landragin, and A. Clairon, From optical lattice clocks to the measurement of forces in the Casimir regime, Phys. Rev. A 75(6), 063608 (2007)

    Article  ADS  Google Scholar 

  30. S. Dimopoulos and A. A. Geraci, Probing submicron forces by interferometry of Bose–Einstein condensed atoms, Phys. Rev. D 68(12), 124021 (2003)

    Article  ADS  Google Scholar 

  31. X. B. Deng, Y. Y. Xu, X. C. Duan, and Z. K. Hu, Precisely mapping the absolute magnetic field in vacuum by an optical ramsey atom interferometer, Phys. Rev. Appl. 15(5), 054062 (2021)

    Article  ADS  Google Scholar 

  32. H. Zhang, X. Ren, W. Yan, Y. Cheng, H. Zhou, Z. Gao, Q. Luo, M. Zhou, and Z. Hu, Effects related to the temperature of atoms in an atom interferometry gravimeter based on ultra-cold atoms, Opt. Express 29(19), 30007 (2021)

    Article  ADS  Google Scholar 

  33. W. Yan, X. Ren, M. Zhou, and Z. Hu, Precision magnetic field sensing with dual multi-wave atom interferometer, Sensors (Basel) 23(1), 173 (2022)

    Article  ADS  Google Scholar 

  34. F. Reinhard, Design and construction of an atomic clock on an atom chip, Thesis, Université Pierre et Marie Curie-Paris VI, 2009

  35. Y. Eto, M. Sadgrove, S. Hasegawa, H. Saito, and T. Hirano, Control of spin current in a Bose gas by periodic application of n pulses, Phys. Rev. A 90(1), 013626 (2014)

    Article  ADS  Google Scholar 

  36. M. Fattori, C. D’Errico, G. Roati, M. Zaccanti, M. Jona-Lasinio, M. Modugno, M. Inguscio, and G. Modugno, Atom interferometry with a weakly interacting Bose–Einstein condensate, Phys. Rev. Lett. 100(8), 080405 (2008)

    Article  ADS  Google Scholar 

  37. M. Fattori, T. Koch, S. Goetz, A. Griesmaier, S. Hensler, J. Stuhler, and T. Pfau, Demagnetization cooling of a gas, Nat. Phys. 2(11), 765 (2006)

    Article  Google Scholar 

  38. S. Hensler, A. Greiner, J. Stuhler, and T. Pfau, Depolarisation cooling of an atomic cloud, Europhys. Lett. 71(6), 918 (2005)

    Article  ADS  Google Scholar 

  39. A. Widera, F. Gerbier, S. Fölling, T. Gericke, O. Mandel, and I. Bloch, Precision measurement of spin-dependent interaction strengths for spin-1 and spin-2 87Rb atoms, New J. Phys. 8(8), 152 (2006)

    Article  ADS  Google Scholar 

  40. H. Schmaljohann, M. Erhard, J. Kronjäger, M. Kottke, S. van Staa, L. Cacciapuoti, J. J. Arlt, K. Bongs, and K. Sengstock, Dynamics of F = 2 Spinor Bose–Einstein condensates, Phys. Rev. Lett. 92(4), 040402 (2004)

    Article  ADS  Google Scholar 

  41. T. Kuwamoto, K. Araki, T. Eno, and T. Hirano, Magnetic field dependence of the dynamics of 87Rb spin-2 Bose–Einstein condensates, Phys. Rev. A 69(6), 063604 (2004)

    Article  ADS  Google Scholar 

  42. X. T. Xu, Z. Y. Wang, R. H. Jiao, C. R. Yi, W. Sun, and S. Chen, Ultra-low noise magnetic field for quantum gases, Rev. Sci. Instrum. 90(5), 054708 (2019)

    Article  ADS  Google Scholar 

  43. B. Merkel, K. Thirumalai, J. E. Tarlton, V. M. Schäfer, C. J. Ballance, T. P. Harty, and D. M. Lucas, Magnetic field stabilization system for atomic physics experiments, Rev. Sci. Instrum. 90(4), 044702 (2019)

    Article  ADS  Google Scholar 

  44. F. Riehle, Frequency Standards: Basics and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004

    Google Scholar 

  45. H. C. J. Gan, G. Maslennikov, K. W. Tseng, T. R. Tan, R. Kaewuam, K. J. Arnold, D. Matsukevich, and M. D. Barrett, Oscillating-magnetic-field effects in high-precision metrology, Phys. Rev. A 98(3), 032514 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (Grant No. 2020YFC2200200), the National Natural Science Foundation of China (Grants Nos. 12004128, 12104174, and 12274163), and Open Fund of Wuhan, Gravitation and Solid Earth Tides, National Observation and Research Station (Grants Nos. WHYWZ202211 and WHYWZ202104). We thank Dr. Xiaochun Duan and Dr. Jean-Michel Le Floch for the enlightening talk about this work. Codes and data are available upon request from the authors. The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjie Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Ren, X., Xu, W. et al. Magnetic-field-sensitive multi-wave interference. Front. Phys. 18, 52306 (2023). https://doi.org/10.1007/s11467-023-1300-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1300-8

Keywords

Navigation