Skip to main content
Log in

Dynamic polarization rotation and vector field steering based on phase change metasurface

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Polarization rotation and vector field steering of electromagnetic wave are of great significance in modern optical applications. However, conventional polarization devices are bulky, monofunctional and lack of tunability, which pose great challenges to the miniaturized and multifunctional applications. Herein, we propose a meta-device that is capable of multi-state polarization rotation and vector field steering based on phase change metasurface. The supercell of the meta-device consists of four Ge2Sb2Te5 (GST) elliptic cylinders located on a SiO2 substrate. By independently controlling the phase state (amorphous or crystalline) of each GST elliptic cylinder, the meta-device can rotate the polarization plane of the linearly polarized incident light to different angles that cover from 19.8° to 154.9° at a wavelength of 1550 nm. Furthermore, by merely altering the phase transition state of GST elliptic cylinders, we successfully demonstrated a vector field steering by generating optical vortices carrying orbital angular momentums (OAMs) with topological charges of 0, 1 and −1, respectively. The proposed method provides a new platform for investigating dynamically tunable optical devices and has potential applications in many fields such as optical communications and information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Rhee, Y. G. June, J. S. Lee, K. K. Lee, J. H. Ha, Z. H. Kim, S. J. Jeon, and M. Cho, Femtosecond characterization of vibrational optical activity of chiral molecules, Nature 458(7236), 310 (2009)

    Article  ADS  Google Scholar 

  2. E. Bahar, Road maps for the use of Mueller matrix measurements to detect and identify biological and chemical materials through their optical activity: Potential applications in biomedicine, biochemistry, security, and industry, J. Opt. Soc. Am. B 26(2), 364 (2009)

    Article  ADS  Google Scholar 

  3. Y. He, W. Bo, R. K. Dukor, and L. A. Nafie, Determination of absolute configuration of chiral molecules using vibrational optical activity: A review, Appl. Spectrosc. 65(7), 699 (2011)

    Article  ADS  Google Scholar 

  4. Y. Lian, X. Qi, Y. Wang, Z. Bai, Y. Wang, and Z. Lu, OAM beam generation in space and its applications: A review, Opt. Lasers Eng. 151, 106923 (2022)

    Article  Google Scholar 

  5. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules, Optica 3(6), 628 (2016)

    Article  ADS  Google Scholar 

  6. V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, Structural origin of circularly polarized iridescence in jeweled beetles, Science 325(5939), 449 (2009)

    Article  ADS  Google Scholar 

  7. F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, Polarization pattern of vector vortex beams generated by q-plates with different topological charges, Appl. Opt. 51(10), C1 (2012)

    Article  Google Scholar 

  8. Y. S. Rumala, G. Milione, T. A. Nguyen, S. Pratavieira, Z. Hossain, D. Nolan, S. Slussarenko, E. Karimi, L. Marrucci, and R. R. Alfano, Tunable supercontinuum light vector vortex beam generator using a q-plate, Opt. Lett. 38(23), 5083 (2013)

    Article  ADS  Google Scholar 

  9. S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, A review of dielectric optical metasurfaces for wavefront control, Nanophotonics 7(6), 1041 (2018)

    Article  Google Scholar 

  10. K. Ding, S. Y. Xiao, and L. Zhou, New frontiers in metamaterials research: Novel electronic materials and inhomogeneous metasurfaces, Front. Phys. 8(4), 386 (2013)

    Article  ADS  Google Scholar 

  11. A. H. Dorrah, N. A. Rubin, A. Zaidi, M. Tamagnone, and F. Capasso, Metasurface optics for on-demand polarization transformations along the optical path, Nat. Photonics 15(4), 287 (2021)

    Article  ADS  Google Scholar 

  12. Z. Y. Song, Q. Q. Chu, X. P. Shen, and Q. H. Liu, Wideband high-efficient linear polarization rotators, Front. Phys. 13(5), 137803 (2018)

    Article  ADS  Google Scholar 

  13. D. Wen, J. J. Cadusch, J. Meng, and K. B. Crozier, Light field on a chip: Metasurface-based multicolor holograms, Adv. Photonics 3(2), 024001 (2021)

    Article  ADS  Google Scholar 

  14. M. K. Chen, Y. Wu, L. Feng, Q. Fan, M. Lu, T. Xu, and D. P. Tsai, Principles, functions, and applications of optical meta-lens, Adv. Opt. Mater. 9(4), 2001414 (2021)

    Article  Google Scholar 

  15. H. Yang, Z. Xie, G. Li, K. Ou, F. Yu, H. He, H. Wang, and X. Yuan, All-dielectric metasurface for fully resolving arbitrary beams on a higher-order Poincaré sphere, Photon. Res. 9(3), 331 (2021)

    Article  Google Scholar 

  16. Z. Li, X. Cai, L. Huang, H. Xu, Y. Wei, and N. Dai, Controllable polarization rotator with broadband high transmission using all-dielectric metasurfaces, Adv. Theory Simul. 2(9), 1900086 (2019)

    Article  Google Scholar 

  17. D. Wen, F. Yue, C. Zhang, X. Zang, H. Liu, W. Wang, and X. Chen, Plasmonic metasurface for optical rotation, Appl. Phys. Lett. 111(2), 023102 (2017)

    Article  ADS  Google Scholar 

  18. M. A. Cole, W. C. Chen, M. Liu, S. S. Kruk, W. J. Padilla, I. V. Shadrivov, and D. A. Powell, Strong broadband terahertz optical activity through control of the Blaschke phase with chiral metasurfaces, Phys. Rev. A 8(1), 014019 (2017)

    Article  Google Scholar 

  19. M. Al-Mahmoud, V. Coda, A. Rangelov, and G. Montemezzani, Broadband polarization rotator with tunable rotation angle composed of three wave plates, Phys. Rev. A 13(1), 014048 (2020)

    Article  Google Scholar 

  20. H. Ahmed, H. Kim, Y. Zhang, Y. Intaravanne, J. Jang, J. Rho, S. Chen, and X. Chen, Optical metasurfaces for generating and manipulating optical vortex beams, Nanophotonics 11(5), 941 (2022)

    Article  Google Scholar 

  21. Y. Zhang, C. Ríos, M. Y. Shalaginov, M. Li, A. Majumdar, T. Gu, and J. Hu, Myths and truths about optical phase change materials: A perspective, Appl. Phys. Lett. 118(21), 210501 (2021)

    Article  ADS  Google Scholar 

  22. F. Ding, Y. Yang, and S. I. Bozhevolnyi, Dynamic metasurfaces using phase-change chalcogenides, Adv. Opt. Mater. 7(14), 1801709 (2019)

    Article  Google Scholar 

  23. I. Zubritskaya, N. Maccaferri, X. Inchausti Ezeiza, P. Vavassori, and A. Dmitriev, Magnetic control of the chiroptical plasmonic surfaces, Nano Lett. 18(1), 302 (2018)

    Article  ADS  Google Scholar 

  24. H. S. Ee and R. Agarwal, Tunable metasurface and flat optical zoom lens on a stretchable substrate, Nano Lett. 16(4), 2818 (2016)

    Article  ADS  Google Scholar 

  25. J. Kalikka, J. Akola, and R. O. Jones, Simulation of crystallization in Ge2Sb2Te5: A memory effect in the canonical phase-change material, Phys. Rev. B 90(18), 184109 (2014)

    Article  ADS  Google Scholar 

  26. D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, Breaking the speed limits of phase-change memory, Science 336(6088), 1566 (2012)

    Article  ADS  Google Scholar 

  27. M. Wuttig, H. Bhaskaran, and T. Taubner, Phase-change materials for non-volatile photonic applications, Nat. Photonics 11(8), 465 (2017)

    Article  Google Scholar 

  28. J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5, Nat. Commun. 10(1), 396 (2019)

    Article  ADS  Google Scholar 

  29. C. Choi, S. Y. Lee, S. E. Mun, G. Y. Lee, J. Sung, H. Yun, J. H. Yang, H. O. Kim, C. Y. Hwang, and B. Lee, Metasurface with nanostructured Ge2Sb2Te5 as a platform for broadband-operating wavefront switch, Adv. Opt. Mater. 7(12), 1900171 (2019)

    Article  Google Scholar 

  30. S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, Tunable nanophotonics enabled by chalcogenide phase-change materials, Nanophotonics 9(5), 1189 (2020)

    Article  Google Scholar 

  31. M. Zhang, M. Pu, F. Zhang, Y. Guo, Q. He, X. Ma, Y. Huang, X. Li, H. Yu, and X. Luo, Plasmonic metasurfaces for switchable photonic spin-orbit interactions based on phase change materials, Adv. Sci. (Weinh.) 5(10), 1800835 (2018)

    Google Scholar 

  32. X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, Beam switching and bifocal zoom lensing using active plasmonic metasurfaces, Light Sci. Appl. 6(7), e17016 (2017)

    Article  ADS  Google Scholar 

  33. B. Fang, D. Feng, P. Chen, L. Shi, J. Cai, J. Li, C. Li, Z. Hong, and X. Jing, Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region, Front. Phys. 17(5), 53502 (2022)

    Article  ADS  Google Scholar 

  34. B. J. Thompson, D. Goldstein, and D. H. Goldstein, Polarized Light, Revised and Expanded, 2nd Ed., 42–43, CRC Press, 2003

  35. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, A perfect metamaterial polarization rotator, Appl. Phys. Lett. 103(17), 171107 (2013)

    Article  ADS  Google Scholar 

  36. J. Chen, C. Wan, and Q. Zhan, Engineering photonic angular momentum with structured light: A review, Adv. Photonics 3(6), 064001 (2021)

    Article  ADS  Google Scholar 

  37. Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, and X. Yuan, Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities, Light Sci. Appl. 8(1), 90 (2019)

    Article  ADS  Google Scholar 

  38. D. Naidoo, K. Aït-Ameur, M. Brunel, and A. Forbes, Intra-cavity generation of superpositions of Laguerre-Gaussian beams, Appl. Phys. B 106(3), 683 (2012)

    Article  ADS  Google Scholar 

  39. J. R. Thompson, J. A. Burrow, P. J. Shah, J. Slagle, E. S. Harper, A. Van Rynbach, I. Agha, and M. S. Mills, Artificial neural network discovery of a switchable metasurface reflector, Opt. Express 28(17), 24629 (2020)

    Article  ADS  Google Scholar 

  40. N. Fleurence, B. Hay, G. Davée, A. Cappella, and E. Foulon, Thermal conductivity measurements of thin films at high temperature modulated photothermal radiometry at LNE, Phys. Status Solidi. A 212(3), 535 (2015)

    Article  ADS  Google Scholar 

  41. S. C. Agarwal, Role of potential fluctuations in phase-change GST memory devices, Phys. Status Solidi B 249(10), 1956 (2012)

    Article  ADS  Google Scholar 

  42. S. W. Ryu, J. H. Oh, J. H. Lee, B. J. Choi, W. Kim, S. K. Hong, C. S. Hwang, and H. J. Kim, Phase transformation behaviors of SiO2 doped Ge2Sb2Te5 films for application in phase change random access memory, Appl. Phys. Lett. 92(14), 142110 (2008)

    Article  ADS  Google Scholar 

  43. C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, Active dielectric metasurface based on phase-change medium, Laser Photonics Rev. 10(6), 986 (2016)

    Article  ADS  Google Scholar 

  44. Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, Optically reconfigurable metasurfaces and photonic devices based on phase change materials, Nat. Photonics 10(1), 60 (2016)

    Article  ADS  Google Scholar 

  45. R. Pandian, B. J. Kooi, G. Palasantzas, J. T. M. De Hosson, and A. Pauza, Nanoscale electrolytic switching in phase-change chalcogenide films, Adv. Mater. 19(24), 4431 (2007)

    Article  Google Scholar 

  46. W. Zhang, R. Mazzarello, M. Wuttig, and E. Ma, Designing crystallization in phase-change materials for universal memory and neuro-inspired computing, Nat. Rev. Mater. 4(3), 150 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial supports from the Guangdong Major Project of Basic Research (Grant No. 2020B0301030009), the National Key R&D Program of China (Grant No. 2018YFB1801801), the National Natural Science Foundation of China (Grant Nos. 61935013, 61975133, 11947017, and 12104318), the Natural Science Foundation of Guangdong Province (Grant No. 2020A1515011185), the Science and Technology Innovation Commission of Shenzhen (Grant Nos. KQTD20170330110444030, JCYJ2018 0507182035270, and JCYJ20200109114018750), Shenzhen University (Grant No. 2019075), and China Postdoctoral Science Foundation (Grant No. 2021T140470).

Author information

Authors and Affiliations

Authors

Contributions

H.H. designed and simulated the structure. The project was conceived and supervised by Z.X. and X.Y.. All authors analyzed and discussed the results and approved it for publication.

Corresponding author

Correspondence to Zhenwei Xie.

Additional information

Data availability

Data underlying the results presented in this paper are not publicly available at this time but can be obtained from the authors upon reasonable request.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be constructed as a potential conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Yang, H., Xie, Z. et al. Dynamic polarization rotation and vector field steering based on phase change metasurface. Front. Phys. 18, 12303 (2023). https://doi.org/10.1007/s11467-022-1214-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1214-x

Keywords

Navigation