Skip to main content
Log in

Bifunctional oxygen electrocatalysts for rechargeable zinc-air battery based on MXene and beyond

  • Topical Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Oxygen electrocatalysts are of great importance for the air electrode in zinc—air batteries (ZABs). Owing to large surface area, high electrical conductivity and ease of modification, two-dimensional (2D) materials have been widely studied as oxygen electrocatalysts for the rechargable ZABs. The elaborately modified 2D materials-based electrocatalysts, usually exhibit excellent performance toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which have attracted extensive interests of worldwide researchers. Given the rapid development of bifunctional electrocatalysts toward ORR and OER, the latest progress of non-noble electrocatalysts based on layered double hydroxides (LDHs), graphene, and MXenes are intensively reviewed. The discussion ranges from fundamental structure, synthesis, electrocatalytic performance of these catalysts, as well as their applications in the rechargeable ZABs. Finally, the challenges and outlook are provided for further advancing the commercialization of rechargeable ZABs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Han and H. Chang, Development and opportunities of clean energy in China, Appl. Sci. (Basel) 12(9), 4783 (2022)

    Article  Google Scholar 

  2. L. S. Martins, L. F. Guimarães, A. B. Botelho Junior, J. A. S. Tenório, and D. C. R. Espinosa, Electric car battery: An overview on global demand, recycling and future approaches towards sustainability, J. Environ. Manage. 295, 113091 (2021)

    Article  Google Scholar 

  3. N. O. Moraga, J. P. Xamán, and R. H. Araya, Cooling Li-ion batteries of racing solar car by using multiple phase change materials, Appl. Therm. Eng. 108, 1041 (2016)

    Article  Google Scholar 

  4. D. A. Notter, M. Gauch, R. Widmer, P. Wäger, A. Stamp, R. Zah, and H. J. Althaus, Contribution of Li-ion batteries to the environmental impact of electric vehicles, Environ. Sci. Technol. 44(17), 6550 (2010)

    Article  ADS  Google Scholar 

  5. X. Zeng, J. Li, and L. Liu, Solving spent lithium-ion battery problems in China: Opportunities and challenges, Renew. Sustain. Energy Rev. 52, 1759 (2015)

    Article  Google Scholar 

  6. H. Jiao, S. Jiao, W. L. Song, X. Xiao, D. She, N. Li, H. Chen, J. Tu, M. Wang, and D. Fang, Al homogeneous deposition induced by N-containing functional groups for enhanced cycling stability of Al-ion battery negative electrode, Nano Res. 14(3), 646 (2021)

    Article  ADS  Google Scholar 

  7. J. Li, Z. Kong, X. Liu, B. Zheng, Q. H. Fan, E. Garratt, T. Schuelke, K. Wang, H. Xu, and H. Jin, Strategies to anode protection in lithium metal battery: A review, InfoMat 3(12), 1333 (2021)

    Article  Google Scholar 

  8. S. Chen, Z. Gao, and T. Sun, Safety challenges and safety measures of Li-ion batteries, Energy Sci. Eng. 9(9), 1647 (2021)

    Article  Google Scholar 

  9. D. P. Finegan, J. Zhu, X. Feng, M. Keyser, M. Ulmefors, W. Li, M. Z. Bazant, and S. J. Cooper, The application of data-driven methods and physics-based learning for improving battery safety, Joule 5(2), 316 (2021)

    Article  Google Scholar 

  10. B. Xu, J. Lee, D. Kwon, L. Kong, and M. Pecht, Mitigation strategies for Li-ion battery thermal runaway: A review, Renew. Sustain. Energy Rev. 150, 111437 (2021)

    Article  Google Scholar 

  11. M. Abbas, I. Cho, and J. Kim, Scalable constrained attributes/issues about risk, reliability and optimization in large scale battery pack, J. Energy Storage 39, 102632 (2021)

    Article  Google Scholar 

  12. G. Kovachev, A. Astner, G. Gstrein, L. Aiello, J. Hemmer, W. Sinz, and C. Ellersdorfer, Thermal conductivity in aged Li-ion cells under various compression conditions and state-of-charge, Batteries 7(3), 42 (2021)

    Article  Google Scholar 

  13. H. Liu, Q. Liu, Y. Wang, Y. Wang, S. Chou, Z. Hu, and Z. Zhang, Bifunctional carbon-based cathode catalysts for zinc-air battery: A review, Chin. Chem. Lett. 33(2), 683 (2022)

    Article  Google Scholar 

  14. W. Li, W. Chen, H. Zhang, and Z. Zhang, Integratable solid-state zinc—air battery with extended cycle life inspired by bionics, Chem. Eng. J. 435, 134900 (2022)

    Article  Google Scholar 

  15. A. R. Mainar, E. Iruin, and J. A. Blázquez, High performance secondary zinc-air/silver hybrid battery, J. Energy Storage 33, 102103 (2021)

    Article  Google Scholar 

  16. S. Wang, S. Chen, L. Ma, and J. A. Zapien, Recent progress in cobalt-based carbon materials as oxygen electrocatalysts for zinc—air battery applications, Mater. Today Energy 20, 100659 (2021)

    Article  Google Scholar 

  17. J. Zhou, L. Shan, Z. Wu, X. Guo, G. Fang, and S. Liang, Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode, Chem. Commun. 54, 4457 (2018)

    Article  Google Scholar 

  18. K. Jayasayee, S. Clark, C. King, P. I. Dahl, J. Richard Tolchard, and M. Juel, Cold sintering as a cost-effective process to manufacture porous zinc electrodes for rechargeable zinc-air batteries, Processes (Basel) 8(5), 592 (2020)

    Article  Google Scholar 

  19. S. Han, Y. Chen, Y. Hao, Y. Xie, D. Xie, Y. Chen, Y. Xiong, Z. He, F. Hu, L. Li, J. Zhu, and S. Peng, Multidimensional hierarchical CoS2@MXene as trifunctional electrocatalysts for zinc-air batteries and overall water splitting, Sci. China Mater. 64(5), 1127 (2021)

    Article  Google Scholar 

  20. J. Huang, Y. Xie, L. Yan, B. Wang, T. Kong, X. Dong, Y. Wang, and Y. Xia, Decoupled amphoteric water electrolysis and its integration with Mn—Zn battery for flexible utilization of renewables, Energy Environ. Sci. 14(2), 883 (2021)

    Article  Google Scholar 

  21. C. Zhou, X. Chen, S. Liu, Y. Han, H. Meng, Q. Jiang, S. Zhao, F. Wei, J. Sun, T. Tan, and R. Zhang, Super-durable bifunctional oxygen electrocatalyst for high-performance zinc-air batteries, J. Am. Chem. Soc. 144(6), 2694 (2022)

    Article  Google Scholar 

  22. C. Han, W. Li, H. K. Liu, S. Dou, and J. Wang, Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc—air batteries, Mater. Horiz. 6(9), 1812 (2019)

    Article  Google Scholar 

  23. Z. Chen, J. Y. Choi, H. Wang, H. Li, and Z. Chen, Highly durable and active non-precious air cathode catalyst for zinc air battery, J. Power Sources 196(7), 3673 (2011)

    Article  ADS  Google Scholar 

  24. N. Wang, S. Ning, X. Yu, D. Chen, Z. Li, J. Xu, H. Meng, D. Zhao, L. Li, Q. Liu, B. Lu, and S. Chen, Graphene composites with Ru-RuO2 heterostructures: Highly efficient Mott—Schottky-type electrocatalysts for pH-universal water splitting and flexible zinc-air batteries, Appl. Catal. B 302, 120838 (2022)

    Article  Google Scholar 

  25. Q. Zhu, Y. Qu, D. Liu, K. W. Ng, and H. Pan, Two-dimensional layered materials: High-efficient electrocatalysts for hydrogen evolution reaction, ACS Appl. Nano Mater. 3(7), 6270 (2020)

    Article  Google Scholar 

  26. L. Yu, F. Li, J. Zhao, and Z. Chen, Revisiting catalytic performance of supported metal dimers for oxygen reduction reaction via magnetic coupling from first principles, Adv. Powder Mater. 1(3), 100031 (2022)

    Article  Google Scholar 

  27. C. Xia, Y. Zhou, C. He, A. I. Douka, W. Guo, K. Qi, and B. Y. Xia, Recent advances on electrospun nanomaterials for zinc—air batteries, Small Sci. 1(9), 2100010 (2021)

    Article  Google Scholar 

  28. Z. Zhang, H. Zhang, Y. Yao, J. Wang, H. Guo, Y. Deng, and X. Han, Controlled synthesis and structure engineering of transition metal-based nanomaterials for oxygen and hydrogen electrocatalysis in zinc-air battery and water-splitting devices, ChemSusChem 14(7), 1659 (2021)

    Article  Google Scholar 

  29. Z. Zhang, Y. Tan, T. Zeng, L. Yu, R. Chen, N. Cheng, S. Mu, and X. Sun, Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries, Nano Res. 14(7), 2353 (2021)

    Article  ADS  Google Scholar 

  30. D. Ren, J. Ying, M. Xiao, Y. P. Deng, J. Ou, J. Zhu, G. Liu, Y. Pei, S. Li, A. M. Jauhar, H. Jin, S. Wang, D. Su, A. Yu, and Z. Chen, Hierarchically porous multimetal-based carbon nanorod hybrid as an efficient oxygen catalyst for rechargeable zinc—air batteries, Adv. Funct. Mater. 30(7), 1908167 (2020)

    Article  Google Scholar 

  31. H. Sun, M. Wang, S. Zhang, S. Liu, X. Shen, T. Qian, X. Niu, J. Xiong, and C. Yan, Boosting oxygen dissociation over bimetal sites to facilitate oxygen reduction activity of zinc—air battery, Adv. Funct. Mater. 31(4), 2006533 (2021)

    Article  Google Scholar 

  32. X. Zhong, S. Ye, J. Tang, Y. Zhu, D. Wu, M. Gu, H. Pan, and B. Xu, Engineering Pt and Fe dual-metal single atoms anchored on nitrogen-doped carbon with high activity and durability towards oxygen reduction reaction for zinc—air battery, Appl. Catal. B 286, 119891 (2021)

    Article  Google Scholar 

  33. J. Han, H. Bao, J. Q. Wang, L. Zheng, S. Sun, Z. L. Wang, and C. Sun, 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc—air battery, Appl. Catal. B 280, 119411 (2021)

    Article  Google Scholar 

  34. X. Han, T. Zhang, W. Chen, B. Dong, G. Meng, L. Zheng, C. Yang, X. Sun, Z. Zhuang, D. Wang, A. Han, and J. Liu, Mn-N 4 oxygen reduction electrocatalyst: Operando investigation of active sites and high performance in zinc-air battery, Adv. Energy Mater. 11(6), 2002753 (2021)

    Article  Google Scholar 

  35. W. Wu, Y. Liu, D. Liu, W. Chen, Z. Song, X. Wang, Y. Zheng, N. Lu, C. Wang, J. Mao, and Y. Li, Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery, Nano Res. 14(4), 998 (2021)

    Article  ADS  Google Scholar 

  36. J. Zhang, Q. Zhou, Y. Tang, L. Zhang, and Y. Li, Zinc-air batteries: are they ready for prime time, Chem. Sci. (Camb.) 10(39), 8924 (2019)

    Article  Google Scholar 

  37. M. Wu, Y. Wang, Z. Wei, L. Wang, M. Zhuo, J. Zhang, X. Han, and J. Ma, Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc—air batteries, J. Mater. Chem. A 6(23), 10918 (2018)

    Article  Google Scholar 

  38. Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff, L. H. Li, Y. Han, Y. Chen, and S. Z. Qiao, Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions, J. Am. Chem. Soc. 139(9), 3336 (2017)

    Article  Google Scholar 

  39. C. Han, W. Li, H. K. Liu, S. Dou, and J. Wang, Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc—air batteries, Mater. Horiz. 6(9), 1812 (2019)

    Article  Google Scholar 

  40. X. Cai, L. Lai, J. Lin, and Z. Shen, Recent advances in air electrodes for Zn—air batteries: Electrocatalysis and structural design, Mater. Horiz. 4(6), 945 (2017)

    Article  Google Scholar 

  41. Y. Li and H. Dai, Recent advances in zinc—air batteries, Chem. Soc. Rev. 43(15), 5257 (2014)

    Article  Google Scholar 

  42. Y. Zhu, K. Yue, C. Xia, S. Zaman, H. Yang, X. Wang, Y. Yan, and B. Y. Xia, Recent advances on MoF derivatives for non-noble metal oxygen electrocatalysts in zinc—air batteries, Nano-Micro Lett. 13(1), 137 (2021)

    Article  ADS  Google Scholar 

  43. M. Shao, Q. Chang, J. P. Dodelet, and R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction, Chem. Rev. 116(6), 3594 (2016)

    Article  Google Scholar 

  44. T. Reier, M. Oezaslan, and P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials, ACS Catal. 2(8), 1765 (2012)

    Article  Google Scholar 

  45. S. Huang, J. Zhu, J. Tian, and Z. Niu, Recent progress in the electrolytes of aqueous zinc-ion batteries, Chemistry 25(64), 14480 (2019)

    Article  Google Scholar 

  46. J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng, S. Zhang, G. Bo, C. Wang, and Z. Guo, Designing dendrite-free zinc anodes for advanced aqueous zinc batteries, Adv. Funct. Mater. 30(30), 2001263 (2020)

    Article  Google Scholar 

  47. Y. Zhang, G. Yang, M. L. Lehmann, C. Wu, L. Zhao, T. Saito, Y. Liang, J. Nanda, and Y. Yao, Separator effect on zinc electrodeposition behavior and its implication for zinc battery lifetime, Nano Lett. 21(24), 10446 (2021)

    Article  ADS  Google Scholar 

  48. R. Qin, G. Shan, M. Hu, and W. Huang, Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors, Mater. Today Physics 21, 100527 (2021)

    Article  Google Scholar 

  49. K. Li, M. Liang, H. Wang, X. Wang, Y. Huang, J. Coelho, S. Pinilla, Y. Zhang, F. Qi, V. Nicolosi, and Y. Xu, 3D MXene architectures for efficient energy storage and conversion, Adv. Funct. Mater. 30(47), 2000842 (2020)

    Article  Google Scholar 

  50. J. Wang, C. F. Du, Y. Xue, X. Tan, J. Kang, Y. Gao, H. Yu, and Q. Yan, MXenes as a versatile platform for reactive surface modification and superior sodium-ion storages, Exploration 1(2), 20210024 (2021)

    Article  Google Scholar 

  51. K. Li, M. Liang, H. Wang, X. Wang, Y. Huang, J. Coelho, S. Pinilla, Y. Zhang, F. Qi, V. Nicolosi, and Y. Xu, 3D MXene architectures for efficient energy storage and conversion, Adv. Funct. Mater. 30(47), 2000842 (2020)

    Article  Google Scholar 

  52. X. Zhang, J. Xu, H. Wang, J. Zhang, H. Yan, B. Pan, J. Zhou, and Y. Xie, Ultrathin nanosheets of MAX phases with enhanced thermal and mechanical properties in polymeric compositions: Ti3Si0.75Al0.25C2, Angew. Chem. Int. Ed. 52(16), 4361 (2013)

    Article  Google Scholar 

  53. J. Halim, M. R. Lukatskaya, K. M. Cook, J. Lu, C. R. Smith, L. A. Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, Transparent conductive two-dimensional titanium carbide epitaxial thin films, Chem. Mater. 26(7), 2374 (2014)

    Article  Google Scholar 

  54. C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo, N. Kang, X. L. Ma, H. M. Cheng, and W. Ren, Large-area high-quality 2D ultrathin Mo2C superconducting crystals, Nat. Mater. 14(11), 1135 (2015)

    Article  ADS  Google Scholar 

  55. Y. Wang, F. Gu, L. Cao, L. Fan, T. Hou, Q. Zhu, Y. Wu, and S. Xiong, TiCN MXene hybrid BCN nanotubes with trace level Co as an efficient ORR electrocatalyst for Zn-air batteries, Int. J. Hydrogen Energy 47(48), 20894 (2022)

    Article  Google Scholar 

  56. X. Hui, P. Zhang, Z. Wang, D. Zhao, Z. Li, Z. Zhang, C. Wang, and L. Yin, Vacancy defect-rich perovskite SrTiO3/Ti3C2 heterostructures in situ derived from Ti3C2 MXenes with exceptional oxygen catalytic activity for advanced Zn—air batteries, ACS Appl. Energy Mater. 5(5), 6100 (2022)

    Article  Google Scholar 

  57. C. Zhang, H. Dong, B. Chen, T. Jin, J. Nie, and G. Ma, 3D MXene anchored carbon nanotube as bifunctional and durable oxygen catalysts for Zn—air batteries, Carbon 185, 17 (2021)

    Article  Google Scholar 

  58. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23(37), 4248 (2011)

    Article  Google Scholar 

  59. W. Zaman, R. A. Matsumoto, M. W. Thompson, Y. H. Liu, Y. Bootwala, M. B. Dixit, S. Nemsak, E. Crumlin, M. C. Hatzell, P. T. Cummings, and K. B. Hatzell, In situ investigation of water on MXene interfaces, Proc. Natl. Acad. Sci. USA 118(49), e2108325118 (2021)

    Article  Google Scholar 

  60. T. Zhou, C. Wu, Y. Wang, A. P. Tomsia, M. Li, E. Saiz, S. Fang, R. H. Baughman, L. Jiang, and Q. Cheng, Super-tough MXene-functionalized graphene sheets, Nat. Commun. 11(1), 2077 (2020)

    Article  ADS  Google Scholar 

  61. R. Qin, M. Hu, X. Li, T. Liang, H. Tan, J. Liu, and G. Shan, A new strategy for the fabrication of a flexible and highly sensitive capacitive pressure sensor, Microsyst. Nanoeng. 7(1), 100 (2021)

    Article  ADS  Google Scholar 

  62. T. Y. Ma, J. L. Cao, M. Jaroniec, and S. Z. Qiao, Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution, Angew. Chem. Int. Ed. 55(3), 1138 (2016)

    Article  Google Scholar 

  63. G. L. Li, S. Cao, Z. F. Lu, X. Wang, Y. Yan, and C. Hao, FePc nanoclusters modified NiCo layered double hydroxides in parallel with Ti3C2 MXene as a highly efficient and durable bifunctional oxygen electrocatalyst for zinc—air batteries, Appl. Surf. Sci. 591, 153142 (2022)

    Article  Google Scholar 

  64. B. Wei, Z. Fu, D. Legut, T. C. Germann, S. Du, H. Zhang, J. S. Francisco, and R. Zhang, Rational design of highly stable and active MXene-based bifunctional ORR/OER double-atom catalysts, Adv. Mater. 33(40), 2102595 (2021)

    Article  Google Scholar 

  65. H. Zong, W. Liu, M. Li, S. Gong, K. Yu, and Z. Zhu, Oxygen-terminated Nb2CO2 MXene with interfacial self-assembled COF as a bifunctional catalyst for durable zinc—air batteries, ACS Appl. Mater. Interfaces 14(8), 10738 (2022)

    Article  Google Scholar 

  66. X. Han, N. Li, P. Xiong, M. G. Jung, Y. Kang, Q. Dou, Q. Liu, J. Y. Lee, and H. S. Park, Electronically coupled layered double hydroxide/MXene quantum dot metallic hybrids for high-performance flexible zinc—air batteries, InfoMat 3(10), 1134 (2021)

    Article  Google Scholar 

  67. Y. Chen, H. Yao, F. Kong, H. Tian, G. Meng, S. Wang, X. Mao, X. Cui, X. Hou, and J. Shi, V2C MXene synergistically coupling FeNi LDH nanosheets for boosting oxygen evolution reaction, Appl. Catal. B 297, 120474 (2021)

    Article  Google Scholar 

  68. M. Faraji and N. Arianpouya, NiCoFe-layered double hydroxides/MXene/N-doped carbon nanotube composite as a high performance bifunctional catalyst for oxygen electrocatalytic reactions in metal—air batteries, J. Electroanal. Chem. (Lausanne) 901, 115797 (2021)

    Article  Google Scholar 

  69. H. Lei, S. Tan, L. Ma, Y. Liu, Y. Liang, M. S. Javed, Z. Wang, Z. Zhu, and W. Mai, Strongly coupled NiCo2O4 nanocrystal/MXene hybrid through in situ Ni/Co—F bonds for efficient wearable Zn—air batteries, ACS Appl. Mater. Interfaces 12(40), 44639 (2020)

    Article  Google Scholar 

  70. Y. Lu, D. Fan, Z. Chen, W. Xiao, C. Cao, and X. Yang, Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution, Sci. Bull. (Beijing) 65(6), 460 (2020)

    Article  ADS  Google Scholar 

  71. L. He, J. Liu, Y. Liu, B. Cui, B. Hu, M. Wang, K. Tian, Y. Song, S. Wu, Z. Zhang, Z. Peng, and M. Du, Titanium dioxide encapsulated carbon—nitride nanosheets derived from MXene and melamine-cyanuric acid composite as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction, Appl. Catal. B 248, 366 (2019)

    Article  Google Scholar 

  72. A. Fasolino, J. H. Los, and M. I. Katsnelson, Intrinsic ripples in graphene, Nat. Mater. 6(11), 858 (2007)

    Article  ADS  Google Scholar 

  73. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)

    Article  ADS  Google Scholar 

  74. I. Y. Jeon, M. J. Ju, J. Xu, H. J. Choi, J. M. Seo, M. J. Kim, I. T. Choi, H. M. Kim, J. C. Kim, J. J. Lee, H. K. Liu, H. K. Kim, S. Dou, L. Dai, and J. B. Baek, Edge-fluorinated graphene nanoplatelets as high performance electrodes for dye-sensitized solar cells and lithium ion batteries, Adv. Funct. Mater. 25(8), 1170 (2015)

    Article  Google Scholar 

  75. Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C. L. Brown, and X. Yao, Defect graphene as a trifunctional catalyst for electrochemical reactions, Adv. Mater. 28(43), 9532 (2016)

    Article  Google Scholar 

  76. Y. Zhang, X. P. Kong, X. Lin, K. Hu, W. Zhao, G. Xie, X. Lin, X. Liu, Y. Ito, and H. J. Qiu, Enhanced bifunctional catalytic activities of N-doped graphene by Ni in a 3D trimodal nanoporous nanotubular network and its ultralong cycling performance in Zn-air batteries, J. Energy Chem. 66, 466 (2022)

    Article  Google Scholar 

  77. C. Wang, H. Zhao, J. Wang, Z. Zhao, M. Cheng, X. Duan, Q. Zhang, J. Wang, and J. Wang, Atomic Fe hetero-layered coordination between g-C3N4 and graphene nanomeshes enhances the ORR electrocatalytic performance of zinc—air batteries, J. Mater. Chem. A 7(4), 1451 (2019)

    Article  Google Scholar 

  78. C. Wang, Z. Li, L. Wang, X. Niu, and S. Wang, Facile synthesis of 3D Fe/N codoped mesoporous graphene as efficient bifunctional oxygen electrocatalysts for rechargeable Zn—air batteries, ACS Sustain. Chem. & Eng. 7(16), 13873 (2019)

    Article  Google Scholar 

  79. Z. Wang, X. Liao, Z. Lin, F. Huang, Y. Jiang, K. A. Owusu, L. Xu, Z. Liu, J. Li, Y. Zhao, Y. B. Cheng, and L. Mai, 3D nitrogen-doped graphene encapsulated metallic nickel-iron alloy nanoparticles for efficient bifunctional oxygen electrocatalysis, Chemistry 26(18), 3896 (2020)

    Article  Google Scholar 

  80. L. Qin, L. Wang, X. Yang, R. Ding, Z. Zheng, X. Chen, and B. Lv, Synergistic enhancement of oxygen reduction reaction with BC3 and graphitic-N in boron-and nitrogen-codoped porous graphene, J. Catal. 359, 242 (2018)

    Article  Google Scholar 

  81. L. L. Tian, J. Yang, M. Y. Weng, R. Tan, J. X. Zheng, H. B. Chen, Q. C. Zhuang, L. M. Dai, and F. Pan, Fast diffusion of O2 on nitrogen-doped graphene to enhance oxygen reduction and its application for high-rate Zn—air batteries, ACS Appl. Mater. Interfaces 9(8), 7125 (2017)

    Article  Google Scholar 

  82. J. Zhang, H. Zhou, J. Zhu, P. Hu, C. Hang, J. Yang, T. Peng, S. Mu, and Y. Huang, Facile synthesis of defect-rich and S/N Co-doped graphene-like carbon nanosheets as an efficient electrocatalyst for primary and all-solid-state Zn—air batteries, ACS Appl. Mater. Interfaces 9(29), 24545 (2017)

    Article  Google Scholar 

  83. S. Wu, D. Deng, E. Zhang, H. Li, and L. Xu, CoN nanoparticles anchored on ultra-thin N-doped graphene as the oxygen reduction electrocatalyst for highly stable zinc-air batteries, Carbon 196, 347 (2022)

    Article  Google Scholar 

  84. X. Zhang, Z. Yang, Z. Lu, and W. Wang, Bifunctional CoNx embedded graphene electrocatalysts for OER and ORR: A theoretical evaluation, Carbon 130, 112 (2018)

    Article  Google Scholar 

  85. G. Fu, X. Yan, Y. Chen, L. Xu, D. Sun, J. M. Lee, and Y. Tang, Boosting bifunctional oxygen electro-catalysis with 3D graphene aerogel-supported Ni/MnO particles, Adv. Mater. 30(5), 1704609 (2018)

    Article  Google Scholar 

  86. L. Wei, H. E. Karahan, S. Zhai, H. Liu, X. Chen, Z. Zhou, Y. Lei, Z. Liu, and Y. Chen, Amorphous bimetallic oxide—graphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn—air batteries, Adv. Mater. 29(38), 1701410 (2017)

    Article  Google Scholar 

  87. Z. Wang, X. Liao, Z. Lin, F. Huang, Y. Jiang, K. A. Owusu, L. Xu, Z. Liu, J. Li, Y. Zhao, Y. B. Cheng, and L. Mai, 3D nitrogen-doped graphene encapsulated metallic nickel—iron alloy nanoparticles for efficient bifunctional oxygen electrocatalysis, Chem. 26(18), 4044 (2020)

    Article  Google Scholar 

  88. Y. Liu, J. Bao, Z. Li, L. Zhang, S. Zhang, L. Wang, X. Niu, P. Sun, and L. Xu, Large-scale defect-rich iron/nitrogen co-doped graphene-based materials as the excellent bifunctional electrocatalyst for liquid and flexible all-solid-state zinc-air batteries, J. Colloid Interface Sci. 607, 1201 (2022)

    Article  ADS  Google Scholar 

  89. X. Wang, G. Zhan, Y. Wang, Y. Zhang, J. Zhou, R. Xu, H. Gai, H. Wang, H. Jiang, and M. Huang, Engineering core—shell Co9S8/Co nanoparticles on reduced graphene oxide: Efficient bifunctional Mott—Schottky electrocatalysts in neutral rechargeable Zn—air batteries, J. Energy Chem. 68, 113 (2022)

    Article  Google Scholar 

  90. X. Shu, M. Yang, M. Liu, W. Pan, and J. Zhang, The regulation of coordination structure between cobalt and nitrogen on graphene for efficient bifunctional electrocatalysis in Zn—air batteries, J. Energy Chem. 68, 213 (2022)

    Article  Google Scholar 

  91. Y. Xiang, C. Xu, T. Fu, Y. Tang, G. Li, Z. Xiong, C. Guo, and Y. Si, Enhanced bifunctional catalytic performance of nitrogen-doped carbon composite to oxygen reduction and evolution reactions with the regulation of graphene for rechargeable Zn—air batteries, Appl. Surf. Sci. 575, 151730 (2022)

    Article  Google Scholar 

  92. T. Wang, J. Feng, Q. Liu, X. Han, and D. Wu, Facile synthesis of amino acids-derived Fe/N-codoped reduced graphene oxide for enhanced ORR electrocatalyst, J. Electroanal. Chem. (Lausanne) 915, 116326 (2022)

    Article  Google Scholar 

  93. Y. Tian, L. Xu, M. Li, D. Yuan, X. Liu, J. Qian, Y. Dou, J. Qiu, and S. Zhang, Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn—air batteries, Nano-Micro Lett. 13(1), 3 (2021)

    Article  ADS  Google Scholar 

  94. A. Wang, C. Zhao, M. Yu, and W. Wang, Trifunctional Co nanoparticle confined in defect-rich nitrogen-doped graphene for rechargeable Zn-air battery with a long lifetime, Appl. Catal. B 281, 119514 (2021)

    Article  Google Scholar 

  95. Y. Wang, N. Xu, R. He, L. Peng, D. Cai, and J. Qiao, Large-scale defect-engineering tailored tri-doped graphene as a metal-free bifunctional catalyst for superior electrocatalytic oxygen reaction in rechargeable Zn—air battery, Appl. Catal. B 285, 119811 (2021)

    Article  Google Scholar 

  96. X. Zhao, L. Shao, Z. Wang, H. Chen, H. Yang, and L. Zeng, In situ atomically dispersed Fe doped metal-organic framework on reduced graphene oxide as bifunctional electrocatalyst for Zn—air batteries, J. Mater. Chem. C 9(34), 11252 (2021)

    Article  Google Scholar 

  97. Z. Zhu, J. Zhang, X. Peng, Y. Liu, T. Cen, Z. Ye, and D. Yuan, Co3O4—NiCo2O4 hybrid nanoparticles anchored on N-doped reduced graphene oxide nanosheets as an efficient catalyst for Zn—air batteries, Energy Fuels 35(5), 4550 (2021)

    Article  Google Scholar 

  98. X. Chen, D. Chen, G. Li, C. Gong, Y. Chen, Q. Zhang, J. Sui, H. Dong, J. Yu, L. Yu, and L. Dong, A hierarchical architecture of Fe/Co/Ni-doped carbon nanotubes/nanospheres grafted on graphene as advanced bifunctional electrocatalyst for Zn—air batteries, J. Alloys Comp. 873, 159833 (2021)

    Article  Google Scholar 

  99. Z. Zhu, Q. Xu, Z. Ni, K. Luo, Y. Liu, and D. Yuan, CoNi nanoalloys @ N-doped graphene encapsulated in n-doped carbon nanotubes for rechargeable Zn—air batteries, ACS Sustain. Chem. & Eng. 9(40), 13491 (2021)

    Article  Google Scholar 

  100. Q. Wang and D. O’Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets, Chem. Rev. 112(7), 4124 (2012)

    Article  Google Scholar 

  101. S. Li, R. Ma, J. Hu, Z. Li, L. Liu, X. Wang, Y. Lu, G. E. Sterbinsky, S. Liu, L. Zheng, J. Liu, D. Liu, and J. Wang, Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity, Nat. Commun. 13(1), 2916 (2022)

    Article  ADS  Google Scholar 

  102. Y. Zhao, X. Zhang, X. Jia, G. I. N. Waterhouse, R. Shi, X. Zhang, F. Zhan, Y. Tao, L. Z. Wu, C. H. Tung, D. O’Hare, and T. Zhang, Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation, Adv. Energy Mater. 8(18), 1703585 (2018)

    Article  Google Scholar 

  103. G. Chen, H. Wan, W. Ma, N. Zhang, Y. Cao, X. Liu, J. Wang, and R. Ma, Layered metal hydroxides and their derivatives: Controllable synthesis, chemical exfoliation, and electrocatalytic applications, Adv. Energy Mater. 10(11), 1902535 (2020)

    Article  Google Scholar 

  104. K. Yan, G. Wu, and W. Jin, Recent advances in the synthesis of layered, double-hydroxide-based materials and their applications in hydrogen and oxygen evolution, Energy Technol. (Weinheim) 4(3), 354 (2016)

    Article  Google Scholar 

  105. S. Dresp, F. Luo, R. Schmack, S. Kühl, M. Gliech, and P. Strasser, An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes, Energy Environ. Sci. 9(6), 2020 (2016)

    Article  Google Scholar 

  106. C. Tang, H. S. Wang, H. F. Wang, Q. Zhang, G. L. Tian, J. Q. Nie, and F. Wei, Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity, Adv. Mater. 27(30), 4516 (2015)

    Article  Google Scholar 

  107. M. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, and H. Dai, An advanced Ni—Fe layered double hydroxide electrocatalyst for water oxidation, J. Am. Chem. Soc. 135(23), 8452 (2013)

    Article  Google Scholar 

  108. M. Salmanion and M. M. Najafpour, Dendrimer-Ni-based material: Toward an efficient Ni—Fe layered double hydroxide for oxygen-evolution reaction, Inorg. Chem. 60(8), 6073 (2021)

    Article  Google Scholar 

  109. J. Zhang, L. Yu, Y. Chen, X. F. Lu, S. Gao, and X. W. D. Lou, Designed formation of double-shelled Ni—Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction, Adv. Mater. 32(16), 1906432 (2020)

    Article  Google Scholar 

  110. K. R. Park, J. Jeon, H. Choi, J. Lee, D. H. Lim, N. Oh, H. Han, C. Ahn, B. Kim, and S. Mhin, NiFe layered double hydroxide electrocatalysts for an efficient oxygen evolution reaction, ACS Appl. Energy Mater. 5(7), 8592 (2022)

    Article  Google Scholar 

  111. J. N. Hausmann and P. W. Menezes, Effect of surface-adsorbed and intercalated (Oxy)anions on the oxygen evolution reaction, Angew. Chem. Int. Ed. 61(38), e202207279 (2022)

    Article  Google Scholar 

  112. S. Li, Z. Li, R. Ma, C. Gao, L. Liu, L. Hu, J. Zhu, T. Sun, Y. Tang, D. Liu, and J. Wang, A glass-ceramic with accelerated surface reconstruction toward the efficient oxygen evolution reaction, Angew. Chem. Int. Ed. 60, 3773 (2021)

    Article  Google Scholar 

  113. C. Wei, Z. Feng, G. G. Scherer, J. Barber, Y. Shao-Horn, and Z. J. Xu, Cations in octahedral sites: A descriptor for oxygen electrocatalysis on transition-metal spinels, Adv. Mater. 29(23), 1606800 (2017)

    Article  Google Scholar 

  114. S. Liu, R. Wan, Z. Lin, Z. Liu, Y. Liu, Y. Tian, D. D. Qin, and Z. Tang, Probing the Co role in promoting the OER and Zn—air battery performance of NiFe-LDH: A combined experimental and theoretical study, J. Mater. Chem. A 10(10), 5244 (2022)

    Article  Google Scholar 

  115. L. Yan, Z. Xu, X. Liu, S. Mahmood, J. Shen, J. Ning, S. Li, Y. Zhong, and Y. Hu, Integrating trifunctional Co@NC-CNTs@NiFe-LDH electrocatalysts with arrays of porous triangle carbon plates for high-power-density rechargeable Zn—air batteries and self-powered water splitting, Chem. Eng. J. 446, 137049 (2022)

    Article  Google Scholar 

  116. X. Feng, Q. Jiao, W. Chen, Y. Dang, Z. Dai, S. L. Suib, J. Zhang, Y. Zhao, H. Li, and C. Feng, Cactuslike NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution, Appl. Catal. B 286, 119869 (2021)

    Article  Google Scholar 

  117. Z. Kong, J. Chen, X. Wang, X. Long, X. She, D. Li, and D. Yang, Cation vacancy driven efficient CoFe-LDH-based electrocatalysts for water splitting and Zn—air batteries, Adv. Mater. 2(24), 7932 (2021)

    Article  Google Scholar 

  118. D. S. Hall, D. J. Lockwood, C. Bock, and B. R. MacDougall, Nickel hydroxides and related materials: A review of their structures, synthesis and properties, Proc. Math. Phys. Eng. Sci. 471, 20140792 (2015)

    Google Scholar 

  119. T. Wang, J. Wu, Y. Liu, X. Cui, P. Ding, J. Deng, C. Zha, E. Coy, and Y. Li, Scalable preparation and stabilization of atomic-thick CoNi layered double hydroxide nanosheets for bifunctional oxygen electrocatalysis and rechargeable zinc—air batteries, Energy Storage Mater. 16, 24 (2019)

    Article  Google Scholar 

  120. D. Wu, X. Hu, Z. Yang, T. Yang, J. Wen, G. Lu, Q. Zhao, Z. Li, X. Jiang, and C. Xu, NiFe LDH anchoring on Fe/N-doped carbon nanofibers as a bifunctional electrocatalyst for rechargeable zinc—air batteries, Ind. Eng. Chem. Res. 61(22), 7523 (2022)

    Article  Google Scholar 

  121. D. Zhou, Z. Cai, Y. Jia, X. Xiong, Q. Xie, S. Wang, Y. Zhang, W. Liu, H. Duan, and X. Sun, Activating basal plane in NiFe layered double hydroxide by Mn2+ doping for efficient and durable oxygen evolution reaction, Nanoscale Horiz. 3(5), 532 (2018)

    Article  ADS  Google Scholar 

  122. J. Ge, J. Y. Zheng, J. Zhang, S. Jiang, L. Zhang, H. Wan, L. Wang, W. Ma, Z. Zhou, and R. Ma, Controllable atomic defect engineering in layered NixFe1−x(OH)2 nanosheets for electrochemical overall water splitting, J. Mater. Chem. A 9(25), 14432 (2021)

    Article  Google Scholar 

  123. N. Thakur, M. Kumar, D. Mandal, and T. C. Nagaiah, Nickel iron phosphide/phosphate as an oxygen bifunctional electrocatalyst for high-power-density rechargeable Zn—air batteries, ACS Appl. Mater. Interfaces 13(44), 52487 (2021)

    Article  Google Scholar 

  124. M. Zhang, J. Zhang, S. Ran, L. Qiu, W. Sun, Y. Yu, J. Chen, and Z. Zhu, A robust bifunctional catalyst for rechargeable Zn—air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean-derived Fe-N-C matrix, Nano Res. 14(4), 1175 (2021)

    Article  ADS  Google Scholar 

  125. Q. Wang, L. Shang, R. Shi, X. Zhang, Y. Zhao, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, and T. Zhang, NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc—air batteries, Adv. Energy Mater. 7(21), 1700467 (2017)

    Article  Google Scholar 

  126. Y. Lin, H. Wang, C. K. Peng, L. Bu, K. Tian, Y. Zhao, J. Zhao, Y. G. Lin, J. M. Lee, and L. Gao, Co-induced electronic optimization of hierarchical NiFe LDH for oxygen evolution, Small 16(38), 2002426 (2020)

    Article  Google Scholar 

  127. W. Wang, Y. Liu, J. Li, J. Luo, L. Fu, and S. Chen, NiFe LDH nanodots anchored on 3D macro/mesoporous carbon as a high-performance ORR/OER bifunctional electrocatalyst, J. Mater. Chem. A 6(29), 14299 (2018)

    Article  Google Scholar 

  128. X. Cai, T. Jiang, and M. Wu, Confined growth of NiFe LDH with hierarchical structures on copper nanowires for long-term stable rechargeable Zn—air batteries, Appl. Surf. Sci. 577, 151911 (2022)

    Article  Google Scholar 

  129. C. X. Zhao, J. N. Liu, J. Wang, D. Ren, J. Yu, X. Chen, B. Q. Li, and Q. Zhang, A ΔE = 0.63 V bifunctional oxygen electrocatalyst enables high-rate and long-cycling zinc—air batteries, Adv. Mater. 33(15), 2008606 (2021)

    Article  Google Scholar 

  130. L. Wan, Z. Zhao, X. Chen, P. Liu, P. Wang, Z. Xu, Y. Lin, and B. Wang, Controlled synthesis of bifunctional NiCo2O4 @FeNi LDH core—shell nanoarray air electrodes for rechargeable zinc—air batteries, ACS Sustain. Chem. & Eng. 8(30), 11079 (2020)

    Article  Google Scholar 

  131. E. Meza, R. E. Diaz, and C. W. Li, Solution-phase activation and functionalization of colloidal WS2 nanosheets with ni single atoms, ACS Nano 14(2), 2238 (2020)

    Article  Google Scholar 

  132. S. Tian and Q. Tang, Activating transition metal dichalcogenide monolayers as efficient electrocatalysts for the oxygen reduction reaction via single atom doping, J. Mater. Chem. C 9(18), 6040 (2021)

    Article  Google Scholar 

  133. Z. Qin, Z. Wang, and J. Zhao, Computational screening of single-atom catalysts supported by VS2 monolayers for electrocatalytic oxygen reduction/evolution reactions, Nanoscale 14(18), 6902 (2022)

    Article  Google Scholar 

  134. Q. Qi, J. Hu, Y. Zhang, W. Li, B. Huang, and C. Zhang, Two-dimensional metal—organic framework-based electrocatalysts for oxygen evolution and oxygen reduction reactions, Adv. Energy Sustain. Res. 2(3), 2000067 (2021)

    Article  Google Scholar 

  135. S. Zhao, Y. Wang, J. Dong, C. T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, and Z. Tang, Ultrathin metal—organic framework nanosheets for electrocatalytic oxygen evolution, Nat. Energy 1(12), 16184 (2016)

    Article  ADS  Google Scholar 

  136. J. Huang, Y. Li, R. K. Huang, C. T. He, L. Gong, Q. Hu, L. Wang, Y. T. Xu, X. Y. Tian, S. Y. Liu, Z. M. Ye, F. Wang, D. D. Zhou, W. X. Zhang, and J. P. Zhang, Electrochemical exfoliation of pillared-layer metal—organic framework to boost the oxygen evolution reaction, Angew. Chem. Int. Ed. 57(17), 4632 (2018)

    Article  Google Scholar 

  137. H. Li, M. Zhang, W. Zhou, J. Duan, and W. Jin, Ultrathin 2D catalysts with N-coordinated single Co atom outside Co cluster for highly efficient Zn-air battery, Chem. Eng. J. 421, 129719 (2021)

    Article  Google Scholar 

  138. H. Jing, P. Zhu, X. Zheng, Z. Zhang, D. Wang, and Y. Li, Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis, Adv. Powder Mater. 1(1), 100013 (2022)

    Article  Google Scholar 

  139. R. Wang, L. R. Parent, S. Gopalan, and Y. Zhong, Experimental and computational investigations on the SO2 poisoning of (La0.8Sr0.2)0.95MnO3 cathode materials, Adv. Powder Mater. 2(1), 100062 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for Central Universities and the National Key R&D Program of China (Grant No. 2016YFC1402504), and also partially supported by grants from the National Natural Science Foundation of China (No. 52172058).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangcun Shan or Ruguang Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Cui, Z., Liu, J. et al. Bifunctional oxygen electrocatalysts for rechargeable zinc-air battery based on MXene and beyond. Front. Phys. 18, 13603 (2023). https://doi.org/10.1007/s11467-022-1208-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1208-8

Keywords

Navigation