Skip to main content
Log in

Emerging weak antilocalization effect in Ta0.7Nb0.3Sb2 semimetal single crystals

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Weak antilocalization (WAL) effect is commonly observed in low-dimensional systems, three-dimensional (3D) topological insulators and semimetals. Here, we report the growth of high-quality Ta0.7Nb0.3Sb2 single crystals via the chemical vapor transport (CVT). Clear sign of the WAL effect is observed below 50 K, probably due to the strong spin—orbital coupling in 3D bulk. In addition, it is worth noting that a relatively large MR of 120% appears under 1 T magnetic field at T = 2 K. Hall measurements and two-band model fitting results reveal high carrier mobility (>1000 cm2· V−1·s−1 in 2–300 K region), and off-compensation electron/hole ratio of ∼8:1. Due to the angular dependence of the WAL effect and the fermiology of the Ta0.7Nb0.3Sb2 crystals, interesting magnetic-field-induced changes of the symmetry of the anisotropic magnetoresistance (MR) from two-fold (≤ 0.6 T) to four-fold (0.8–1.5 T) and finally to two-fold (≥ 2 T) are observed. This phenomenon is attributed to the mechanism shift from the low-field WAL dominated MR to WAL and fermiology co-dominated MR and finally to high-field fermiology dominated MR. All these signs indicate that Ta0.7Nb0.3Sb2 may be a topological semimetal candidate, and these magnetotransport properties may attract more theoretical and experimental exploration of the (Ta,Nb)Sb2 family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)

    Article  ADS  Google Scholar 

  2. M. He, H. Sun, and Q. L. He, Topological insulator: Spintronics and quantum computations, Front. Phys. 14(4), 43401 (2019)

    Article  ADS  Google Scholar 

  3. B. Yan and C. Felser, Topological materials: Weyl semimetals, Annu. Rev. Condens. Matter Phys. 8(1), 337 (2017)

    Article  ADS  Google Scholar 

  4. B. Keimer and J. E. Moore, The physics of quantum materials, Nat. Phys. 13(11), 1045 (2017)

    Article  Google Scholar 

  5. Y. Tokura, K. Yasuda, and A. Tsukazaki, Magnetic topological insulators, Nat. Rev. Phys. 1(2), 126 (2019)

    Article  Google Scholar 

  6. H. P. Sun and H. Z. Lu, Quantum transport in topological semimetals under magnetic fields (II), Front. Phys. 14(3), 33405 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  7. L. Guo, Y. K. Liu, G. Y. Gao, Y. Y. Huang, H. Gao, L. Chen, W. Zhao, W. Ren, S. Y. Li, X. G. Li, S. Dong, and R. K. Zheng, Extreme magnetoresistance and SdH oscillation in compensated semimetals of NbSb2 single crystals, J. Appl. Phys. 123(15), 155103 (2018)

    Article  ADS  Google Scholar 

  8. Y. Zhou, C. Gu, X. Chen, Y. Zhou, C. An, and Z. Yang, Structural and transport properties of the topological semimetal TaSb2 at high pressures, J. Solid State Chem. 265, 359 (2018)

    Article  ADS  Google Scholar 

  9. K. Wang, D. Graf, L. Li, L. Wang, and C. Petrovic, Anisotropic giant magnetoresistance in NbSb2, Sci. Rep. 4(1), 7328 (2015)

    Article  Google Scholar 

  10. Y. Li, L. Li, J. Wang, T. Wang, X. Xu, C. Xi, C. Cao, and J. Dai, Resistivity plateau and negative magneto-resistance in the topological semimetal TaSb2, Phys. Rev. B 94(12), 121115(R) (2016)

    Article  ADS  Google Scholar 

  11. A. Pariari, R. Singha, S. Roy, B. Satpati, and P. Mandal, Anisotropic transverse magnetoresistance and Fermi surface in TaSb2, Sci. Rep. 8(1), 10527 (2018)

    Article  ADS  Google Scholar 

  12. L. Guo, M. Xu, L. Chen, X. Huang, X. Y. Shi, J. S. Ying, T. Zhang, W. Zhao, S. Dong, and R. K. Zheng, Electronic transport properties of Nb1−xTaxSb2 single-crystal semimetals grown by a chemical vapor transport based high-throughput method, Cryst. Growth Des. 21(1), 653 (2021)

    Article  Google Scholar 

  13. D. Gresch, Q. Wu, G. W. Winkler, and A. A. Soluyanov, Hidden Weyl points in centrosymmetric paramagnetic metals, New J. Phys. 19(3), 035001 (2017)

    Article  ADS  Google Scholar 

  14. C. Xu, J. Chen, G. X. Zhi, Y. Li, J. Dai, and C. Cao, Electronic structures of transition metal dipnictides XPn2(X = Ta, Nb; Pn = P, As, Sb), Phys. Rev. B 93(19), 195106 (2016)

    Article  ADS  Google Scholar 

  15. I. Belopolski, D. S. Sanchez, Y. Ishida, X. C. Pan, P. Yu, S. Y. Xu, G. Q. Chang, T. R. Chang, H. Zheng, N. Alidoust, G. Bian, M. Neupane, S. M. Huang, C. C. Lee, Y. Song, H. Bu, G. Wang, S. Li, G. Eda, H. T. Jeng, T. Kondo, H. Lin, Z. Liu, F. Song, S. Shin, and M. Z. Hasan, Discovery of a new type of topological Weyl fermion semimetal state in MoxW1−xTe2, Nat. Commun. 7(1), 13643 (2016)

    Article  ADS  Google Scholar 

  16. T. R. Chang, S. Y. Xu, G. Chang, C. C. Lee, S. M. Huang, B. K. Wang, G. Bian, H. Zheng, D. S. Sanchez, I. Belopolski, N. Alidoust, M. Neupane, A. Bansil, H. T. Jeng, H. Lin, and M. Z. Hasan, Prediction of an arctunable Weyl Fermion metallic state in MoxW1−xTe2, Nat. Commun. 7(1), 10639 (2016)

    Article  ADS  Google Scholar 

  17. Y. Wang, E. Liu, H. Liu, Y. Pan, L. Zhang, J. Zeng, Y. Fu, M. Wang, K. Xu, Z. Huang, Z. Wang, H. Z. Lu, D. Xing, B. Wang, X. Wan, and F. Miao, Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2, Nat. Commun. 7(1), 13142 (2016)

    Article  ADS  Google Scholar 

  18. H. Liu, S. Liu, Y. Yi, H. He, and J. Wang, Shubnikov—de Haas oscillations in n and p type Bi2Se3 flakes, 2D Mater. 2(4), 045002 (2015)

    Article  Google Scholar 

  19. Y. Xing, Y. Sun, M. Singh, Y. F. Zhao, M. H. W. Chan, and J. Wang, Electronic transport properties of topological insulator films and low dimensional superconductors, Front. Phys. 8(5), 491 (2013)

    Article  ADS  Google Scholar 

  20. A. Laitinen, M. Kumar, and P. J. Hakonen, Weak antilocalization of composite fermions in graphene, Phys. Rev. B 97(7), 075113 (2018)

    Article  ADS  Google Scholar 

  21. M. Jenderka, J. Barzola-Quiquia, Z. Zhang, H. Frenzel, M. Grundmann, and M. Lorenz, Mott variable-range hopping and weak antilocalization effect in heteroepitaxial Na2IrO3 thin films, Phys. Rev. B 88(4), 045111 (2013)

    Article  ADS  Google Scholar 

  22. M. Xu, T. W. Chen, J. M. Yan, L. Guo, H. Wang, G. Y. Gao, H. S. Luo, Y. Chai, and R. K. Zheng, Tunable magnetoresistance and charge carrier density in Cr: In2O3/PbMg1/3Nb2/3O3—PbTiO3 ferroelectric field-effect devices, Phys. Rev. Appl. 13(6), 064006 (2020)

    Article  ADS  Google Scholar 

  23. Y. Gan, J. Liang, C. Cho, S. Li, Y. Guo, X. Ma, X. Wu, J. Wen, X. Du, M. He, C. Liu, S. A. Yang, K. Wang, and L. Zhang, Bandgap opening in MoTe2 thin flakes induced by surface oxidation, Front. Phys. 15(3), 33602 (2020)

    Article  ADS  Google Scholar 

  24. K. Shrestha, M. Chou, D. Graf, H. D. Yang, B. Lorenz, and C. W. Chu, Extremely large nonsaturating magnetoresistance and ultrahigh mobility due to topological surface states in the metallic Bi2Te3 topological insulator, Phys. Rev. B 95(19), 195113 (2017)

    Article  ADS  Google Scholar 

  25. O. Chiatti, C. Riha, D. Lawrenz, M. Busch, S. Dusari, J. Sanchez-Barriga, A. Mogilatenko, L. V. Yashina, S. Valencia, A. A. Unal, O. Rader, and S. F. Fischer, 2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes, Sci. Rep. 6(1), 27483 (2016)

    Article  ADS  Google Scholar 

  26. C. Shekhar, C. E. ViolBarbosa, B. Yan, S. Ouardi, W. Schnelle, G. H. Fecher, and C. Felser, Evidence of surface transport and weak antilocalization in a single crystal of the Bi2Te2Se topological insulator, Phys. Rev. B 90(16), 165140 (2014)

    Article  ADS  Google Scholar 

  27. K. Shrestha, D. Graf, V. Marinova, B. Lorenz, and C. W. Chu, Weak antilocalization effect due to topological surface states in Bi2Se2.1Te0.9, J. Appl. Phys. 122(14), 145901 (2017)

    Article  ADS  Google Scholar 

  28. W. Zhao, L. Chen, Z. Yue, Z. Li, D. Cortie, M. Fuhrer, and X. Wang, Quantum oscillations of robust topological surface states up to 50 K in thick bulk-insulating topological insulator, npj Quantum Mater. 4(1), 56 (2019)

    Article  ADS  Google Scholar 

  29. G. Xu, W. Wang, X. Zhang, Y. Du, E. Liu, S. Wang, G. Wu, Z. Liu, and X. X. Zhang, Weak antilocalization effect and noncentrosymmetric superconductivity in a topologically nontrivial semimetal LuPdBi, Sci. Rep. 4(1), 5709 (2015)

    Article  Google Scholar 

  30. O. Pavlosiuk, D. Kaczorowski, and P. Wisniewski, Shubnikov—de Haas oscillations, weak antilocalization effect and large linear magnetoresistance in the putative topological superconductor LuPdBi, Sci. Rep. 5(1), 9158 (2015)

    Article  ADS  Google Scholar 

  31. Z. Hou, Y. Wang, E. Liu, H. Zhang, W. Wang, and G. Wu, Large low-field positive magnetoresistance in nonmagnetic half-Heusler ScPtBi single crystal, Appl. Phys. Lett. 107(20), 202103 (2015)

    Article  ADS  Google Scholar 

  32. A. Laha, S. Malick, R. Singha, P. Mandal, P. Rambabu, V. Kanchana, and Z. Hossain, Magnetotransport properties of the correlated topological nodal-line semimetal YbCdGe, Phys. Rev. B 99(24), 241102(R) (2019)

    Article  ADS  Google Scholar 

  33. A. Laha, P. Rambabu, V. Kanchana, L. Petit, Z. Szotek, and Z. Hossain, Experimental and theoretical study of the correlated compound YbCdSn: Evidence for large magnetoresistance and mass enhancement, Phys. Rev. B 102(23), 235135 (2020)

    Article  ADS  Google Scholar 

  34. S. Sasmal, R. Mondal, R. Kulkarni, A. Thamizhavel, and B. Singh, Magnetotransport properties of noncentrosymmetric CaAgBi single crystal, J. Phys.: Condens. Matter 32(33), 335701 (2020)

    Google Scholar 

  35. J. Zhang, Z. Hou, C. Zhang, J. Chen, P. Li, Y. Wen, Q. Zhang, W. Wang, and X. Zhang, Weak antilocalization effect and high-pressure transport properties of ScPdBi single crystal, Appl. Phys. Lett. 115(17), 172407 (2019)

    Article  ADS  Google Scholar 

  36. L. Deng, Z. H. Liu, X. Q. Ma, Z. P. Hou, E. K. Liu, X. K. Xi, W. H. Wang, G. H. Wu, and X. X. Zhang, Observation of weak antilocalization effect in high-quality ScNiBi single crystal, J. Appl. Phys. 121(10), 105106 (2017)

    Article  ADS  Google Scholar 

  37. J. Chen, H. Li, B. Ding, Z. Hou, E. Liu, X. Xi, H. Zhang, G. Wu, and W. Wang, Structural and magneto-transport properties of topological trivial LuNiBi single crystals, J. Alloys Compd. 784, 822 (2019)

    Article  Google Scholar 

  38. Z. Hou, Y. Wang, G. Xu, X. Zhang, E. Liu, W. Wang, Z. Liu, X. Xi, W. Wang, and G. Wu, Transition from semiconducting to metallic-like conducting and weak antilocalization effect in single crystals of LuPtSb, Appl. Phys. Lett. 106(10), 102102 (2015)

    Article  ADS  Google Scholar 

  39. S. Hikami, A. I. Larkin, and Y. Nagaoka, Spin—orbit interaction and magnetoresistance in the two dimensional random system, Prog. Theor. Phys. 63(2), 707 (1980)

    Article  ADS  Google Scholar 

  40. B. A. Assaf, T. Cardinal, P. Wei, F. Katmis, J. S. Moodera, and D. Heiman, Linear magnetoresistance in topological insulator thin films: Quantum phase coherence effects at high temperatures, Appl. Phys. Lett. 102(1), 012102 (2013)

    Article  ADS  Google Scholar 

  41. A. Rehr and S. M. Kauzlarich, NbSb2, Acta Crystallogr. C 50(8), 1177 (1994)

    Article  Google Scholar 

  42. R. Singha, A. K. Pariari, B. Satpati, and P. Mandal, Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS, Proc. Natl. Acad. Sci. USA 114(10), 2468 (2017)

    Article  ADS  Google Scholar 

  43. S. Sun, Q. Wang, P. J. Guo, K. Liu, and H. Lei, Large magnetoresistance in LaBi: Origin of field-induced resistivity upturn and plateau in compensated semimetals, New J. Phys. 18(8), 082002 (2016)

    Article  ADS  Google Scholar 

  44. F. F. Tafti, Q. D. Gibson, S. K. Kushwaha, N. Haldolaarachchige, and R. J. Cava, Resistivity plateau and extreme magnetoresistance in LaSb, Nat. Phys. 12(3), 272 (2016)

    Article  Google Scholar 

  45. L. Guo, T. W. Chen, C. Chen, L. Chen, Y. Zhang, G. Y. Gao, J. Yang, X. G. Li, W. Y. Zhao, S. Dong, and R. K. Zheng, Electronic transport evidence for topological nodal-line semimetals of ZrGeSe single crystals, ACS Appl. Electron. Mater. 1(6), 869 (2019)

    Article  Google Scholar 

  46. J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids, Oxford University Press, 1960

  47. Y. L. Wang, L. R. Thoutam, Z. L. Xiao, J. Hu, S. Das, Z. Q. Mao, J. Wei, R. Divan, A. Luican-Mayer, G. W. Crabtree, and W. K. Kwok, Origin of the turn-on temperature behavior in WTe2, Phys. Rev. B 92(18), 180402(R) (2015)

    Article  ADS  Google Scholar 

  48. Y. Kopelevich, J. C. M. Pantoja, R. R. da Silva, and S. Moehlecke, Universal magnetic-field-driven metal—insulator—metal transformations in graphite and bismuth, Phys. Rev. B 73(16), 165128 (2006)

    Article  ADS  Google Scholar 

  49. C. M. Hurd, The Hall Effect in Metals and Alloys, Plenum, New York, 1972

    Book  Google Scholar 

  50. H. T. He, G. Wang, T. Zhang, I. K. Sou, G. K. L. Wong, J. N. Wang, H. Z. Lu, S. Q. Shen, and F. C. Zhang, Impurity effect on weak antilocalization in the topological insulator Bi2Te3, Phys. Rev. Lett. 106(16), 166805 (2011)

    Article  ADS  Google Scholar 

  51. Z. Yuan, H. Lu, Y. Liu, J. Wang, and S. Jia, Large magnetoresistance in compensated semimetals TaAs2 and NbAs2, Phys. Rev. B 93(18), 184405 (2016)

    Article  ADS  Google Scholar 

  52. A. Collaudin, B. Fauqué, Y. Fuseya, W. Kang, and K. Behnia, Angle dependence of the orbital magnetoresistance in Bismuth, Phys. Rev. X 5(2), 021022 (2015)

    Google Scholar 

  53. Y. Luo, R. D. McDonald, P. F. S. Rosa, B. Scott, N. Wakeham, N. J. Ghimire, E. D. Bauer, J. D. Thompson, and F. Ronning, Anomalous electronic structure and magnetoresistance in TaAs2, Sci. Rep. 6(1), 27294 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974155 and 12104128), the Natural Science Foundation of Jiangsu Province (Grant No. BK20210360), the Postdoctoral Research Program of Jiangsu Province (Grant No. 2021K581C), and the Fundamental Research Funds for the Central Universities (Grant No. B210201026). W. Z. and X. W. acknowledge the support from ARC Centre of Excellence in Future Low-Energy Electronic Technologies (No. CE170100039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Guo, Weiyao Zhao or Ren-Kui Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Guo, L., Chen, L. et al. Emerging weak antilocalization effect in Ta0.7Nb0.3Sb2 semimetal single crystals. Front. Phys. 18, 13304 (2023). https://doi.org/10.1007/s11467-022-1198-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1198-6

Keywords

Navigation