Skip to main content
Log in

High performance of hot-carrier generation, transport and injection in TiN/TiO2 junction

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Improving the performance of generation, transport and injection of hot carriers within metal/semiconductor junctions is critical for promoting the hot-carrier applications. However, the conversion efficiency of hot carriers in the commonly used noble metals (e.g., Au) is extremely low. Herein, through a systematic study by first-principles calculation and Monte Carlo simulation, we show that TiN might be a promising plasmonic material for high-efficiency hot-carrier applications. Compared with Au, TiN shows obvious advantages in the generation (high density of low-energy hot electrons) and transport (long lifetime and mean free path) of hot carriers. We further performed a device-oriented study, which reveals that high hot-carrier injection efficiency can be achieved in core/shell cylindrical TiN/TiO2 junctions. Our findings provide a deep insight into the intrinsic processes of hot-carrier generation, transport and injection, which is helpful for the development of hot-carrier devices and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. C. Clavero, Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices, Nat. Photonics 8(2), 95 (2014)

    Article  ADS  Google Scholar 

  2. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, Photodetection with active optical antennas, Science 332(6030), 702 (2011)

    Article  ADS  Google Scholar 

  3. Y. Tian and T. Tatsuma, Plasmon-induced photoelec-trochemistry at metal nanoparticles supported on nanoporous TiO2, Chem. Commun. 16(16), 1810 (2004)

    Article  Google Scholar 

  4. C. Scales and P. Berini, Thin-film Schottky barrier photodetector models, IEEE J. Quantum Electron. 46(5), 633 (2010)

    Article  ADS  Google Scholar 

  5. G. V. Naik, V. M. Shalaev, and A. Boltasseva, Alternative plasmonic materials: Beyond gold and silver, Adv. Mater. 25(24), 3264 (2013)

    Article  Google Scholar 

  6. L. J. Krayer, K. J. Palm, C. Gong, A. Torres, C. E. P. Villegas, A. R. Rocha, M. S. Leite, and J. N. Munday, Enhanced near-infrared photoresponse from nanoscale Ag-Au alloyed films, ACS Photonics 7(7), 1689 (2020)

    Article  Google Scholar 

  7. G. Tagliabue, J. S. DuChene, M. Abdellah, A. Habib, D. J. Gosztola, Y. Hattori, W. H. Cheng, K. Zheng, S. E. Canton, R. Sundararaman, J. Sá, and H. A. Atwater, Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p—GaN heterostructures, Nat. Mater. 19(12), 1312 (2020)

    Article  ADS  Google Scholar 

  8. M. Ortolani, A. Mancini, A. Budweg, D. Garoli, D. Brida, and F. de Angelis, Pump-probe spectroscopy study of ultrafast temperature dynamics in nanoporous gold, Phys. Rev. B 99(3), 035435 (2019)

    Article  ADS  Google Scholar 

  9. Y. J. Chang and K. H. Shih, Solar energy conversion via internal photoemission in aluminum, copper, and silver: Band structure effects and theoretical efficiency estimates, J. Appl. Phys. 119(18), 183101 (2016)

    Article  ADS  Google Scholar 

  10. A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates, J. Appl. Phys. 115(13), 134301 (2014)

    Article  ADS  Google Scholar 

  11. T. P. White and K. R. Catchpole, Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits, Appl. Phys. Lett. 101(7), 073905 (2012)

    Article  ADS  Google Scholar 

  12. R. T. Ross and A. J. Nozik, Efficiency of hot-carrier solar energy converters, J. Appl. Phys. 53(5), 3813 (1982)

    Article  ADS  Google Scholar 

  13. R. Sundararaman, P. Narang, A. S. Jermyn, W. A. III Goddard, and H. A. Atwater, Theoretical predictions for hot-carrier generation from surface plasmon decay, Nat. Commun. 5(1), 5788 (2014)

    Article  ADS  Google Scholar 

  14. A. M. Brown, R. Sundararaman, P. Narang, W. A. III Goddard, and H. A. Atwater, Nonradiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces, and geometry, ACS Nano 10(1), 957 (2016)

    Article  Google Scholar 

  15. F. Ladstädter, U. Hohenester, P. Puschnig, and C. Ambrosch-Draxl, First-principles calculation of hot-electron scattering in metals, Phys. Rev. B 70(23), 235125 (2004)

    Article  ADS  Google Scholar 

  16. T. Gong and J. N. Munday, Materials for hot carrier plasmonics, Opt. Mater. Express 5(11), 2501 (2015)

    Article  ADS  Google Scholar 

  17. D. Y. Lee, J. H. Park, Y. H. Kim, M. H. Lee, and N. I. Cho, Effect of Nb doping on morphology, crystal structure, optical band gap energy of TiO2 thin films, Curr. Appl. Phys. 14(3), 421 (2014)

    Article  ADS  Google Scholar 

  18. Q. Guo, C. Y. Zhou, Z. B. Ma, and X. M. Yang, Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges, Adv. Mater. 31(50), 1901997 (2019)

    Article  Google Scholar 

  19. D. Z. Zhang, X. H. Gu, F. Y. Jing, F. L. Gao, J. G. Zhou, and S. B. Ruan, High performance ultraviolet detector based on TiO2/ZnO heterojunction, J. Alloys Compd. 618, 551 (2015)

    Article  Google Scholar 

  20. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, Solid-state dyesensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature 395(6702), 583 (1998)

    Article  ADS  Google Scholar 

  21. E. Traver, R. A. Karaballi, Y. E. Monfared, H. Daurie, G. A. Gagnon, and M. Dasog, TiN, ZrN, and HfN nanoparticles on nanoporous Aluminum oxide membranes for solar-driven water evaporation and desalination, ACS Appl. Nano Mater. 3(3), 2787 (2020)

    Article  Google Scholar 

  22. M. Kumar, N. Umezawa, S. Ishii, and T. Nagao, Examining the performance of refractory conductive ceramics as plasmonic materials: A theoretical approach, ACS Photonics 3(1), 43 (2016)

    Article  Google Scholar 

  23. M. W. Yu, S. Ishii, S. L. Shinde, N. K. Tanjaya, K. P. Chen, and T. Nagao, Direct observation of photoinduced charge separation at transition-metal nitride—semiconductor interfaces, ACS Appl. Mater. Interfaces 12(50), 56562 (2020)

    Article  Google Scholar 

  24. M. Marlo and V. Milman, Density-funcitional study of bulk and surface properties of titanium nitride using different exchange-correlation functional, Phys. Rev. B 62(4), 2899 (2000)

    Article  ADS  Google Scholar 

  25. X. H. Chen, R. T. Pekarek, J. Gu, A. Zakutayev, K. E. Hurst, N. R. Neale, Y. Yang, and M. C. Beard, Transient evolution of the built-in field at junctions of GaAs, ACS Appl. Mater. Interfaces 12(36), 40339 (2020)

    Article  Google Scholar 

  26. A. Naldoni, U. Guler, Z. X. Wang, M. Marelli, F. Malara, X. G. Meng, L. V. Besteiro, A. O. Govorov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride, Adv. Opt. Mater. 5(15), 1601031 (2017)

    Article  Google Scholar 

  27. U. Guler, A. Boltasseva, and V. M. Shalaev, Refractory plasmonics, Science 344(6181), 263 (2014)

    Article  ADS  Google Scholar 

  28. G. V. Naik, J. L. Schroeder, X. J. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, Titanium nitride as a plasmonic material for visible and near-infrared wavelengths, Opt. Mater. Express 2(4), 478 (2012)

    Article  ADS  Google Scholar 

  29. D. McIntyre, J. E. Greene, G. Hakansson, J. E. Sundgren, and W. D. Münz, Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films: Kinetics and mechanisms, J. Appl. Phys. 67(3), 1542 (1990)

    Article  ADS  Google Scholar 

  30. P. Bordone, C. Jacoboni, P. Lugli, L. Reggiani, and P. Kocevar, Monte Carlo analysis of hot-phonon effects on non-polar semiconductor transport properties, Physica B+C 134(1–3), 169 (1985)

    Article  ADS  Google Scholar 

  31. A. Piryatinski, C. K. Huang, and T. J. T. Kwan, Theory of electron transport and emission from a semiconductor nanotip, J. Appl. Phys. 125(21), 214301 (2019)

    Article  ADS  Google Scholar 

  32. E. Blandre, D. Jalas, A. Y. Petrov, and M. Eich, Limit of efficiency of hot electrons in metals and their injection inside a semiconductor using a semiclassical approach, ACS Photonics 5(9), 3613 (2018)

    Article  Google Scholar 

  33. G. Kresse and J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)

    Article  Google Scholar 

  34. G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  35. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)

    Article  ADS  Google Scholar 

  36. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. L. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100(13), 136406 (2008)

    Article  ADS  Google Scholar 

  37. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study, Phys. Rev. B 57(3), 1505 (1998)

    Article  ADS  Google Scholar 

  38. A. Habib, F. Florio, and R. Sundararaman, Hot carrier dynamics in plasmonic transition metal nitrides, J. Opt. 20(6), 064001 (2018)

    Article  ADS  Google Scholar 

  39. K. A. Mills, R. F. Davis, S. D. Kevan, G. Thornton, and D. A. Shirley, Angle-resolved photoemission determination of A-line valence bands in Pt and Au using synchrotron radiation, Phys. Rev. B 22(2), 581 (1980)

    Article  ADS  Google Scholar 

  40. N. W. Ashcroft, N. D. Mermin, and W. Dan, Solid State Physics, revised edition, Cengage Leaning Asia PTe Ltd, 2016

  41. D. Gall, I. Petrov, N. Hellgren, L. Hultman, J. E. Sundgren, and J. E. Greene, Growth of poly- and single-crystal ScN on MgO (001): Role of low-energy N2+ irradiation in determining texture, microstructure evolution, and mechanical properties, J. Appl. Phys. 84(11), 6034 (1998)

    Article  ADS  Google Scholar 

  42. R. Sundararaman, K. Letchworth-Weaver, K. A. Schwarz, D. Gunceler, Y. Ozhabes, and T. A. Arias, JDFTx: Software for joint density-functional theory, SoftwareX 6, 278 (2017)

    Article  ADS  Google Scholar 

  43. M. Schlipf and F. Gygi, Optimization algorithm for the generation of ONCV pseudopotentials, Comput. Phys. Commun. 196, 36 (2015)

    Article  ADS  MATH  Google Scholar 

  44. N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56(20), 12847 (1997)

    Article  ADS  Google Scholar 

  45. X. Xu, A. Dutta, J. Khurgin, A. Wei, W. M. Shalaev, and A. Boltasseva, TiN@TiO2 core-shell nanoparticles as plasmon-enhanced photosensitizers: The role of hot electron injection, Laser Photonics Rev. 14(5), 1900376 (2020)

    Article  ADS  Google Scholar 

  46. D. C. Ratchford, A. D. Dunkelberger, I. Vurgaftman, J. C. Owrutsky, and P. E. Pehrsson, Quantification of efficient plasmonic hot-electron injection in gold nanoparticle-TiO2 films, Nano Lett. 17(10), 6047 (2017)

    Article  ADS  Google Scholar 

  47. G. Tagliabue, A. S. Jermyn, R. Sundararaman, A. J. Welch, J. S. Duchene, R. Pala, A. R. Davoyan, P. Narang, and H. A. Atwater, Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices, Nat. Commun. 9(1), 3394 (2018)

    Article  ADS  Google Scholar 

  48. C. Zhang, K. Wu, V. Giannini, and X. F. Li, Planar hot-electron photodetection with Tamm plasmons, ACS Nano 11(2), 1719 (2017)

    Article  Google Scholar 

  49. A. A. Mostofi, J. R. Yates, Y. S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Wannier90: A tool for obtaining maximally-localized Wannier functions, Comput. Phys. Commun. 178(9), 685 (2008)

    Article  ADS  MATH  Google Scholar 

  50. N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Maximally localized Wannier functions: Theory and applications, Rev. Mod. Phys. 84(4), 1419 (2012)

    Article  ADS  Google Scholar 

  51. D. Gerbert and P. Tegeder, Absorbate-mediated relaxation dynamics of hot electrons at metal/organic interfaces, Phys. Rev. B 96(14), 144304 (2017)

    Article  ADS  Google Scholar 

  52. S. Stair, R. G. Johnston, and T. C. Bagg, Spectral distribution of energy from the sun, J. Res. Natl. Bur. Stand. 53(2), 113 (1954)

    Article  Google Scholar 

  53. H. R. Condit and F. Grum, Spectral energy distribution of daylight, J. Opt. Soc. Am. 54(7), 937 (1964)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We really appreciate the financial support from the National Natural Science Foundation of China (Grant Nos. 61875143, 61905170, 62075146, and 11574223), the Natural Science Foundation of Jiangsu Province (Nos. BK20180042, BK20181169, and BK20190816), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 17KJA480004), the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institution, and the start-up funding of Ningbo University, and the Yongjiang Recruitment Project (No. 432200942).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofeng Li or Jun Hu.

Ethics declarations

Conflict of interest The authors have no conflicts to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Wang, Q., Zhang, C. et al. High performance of hot-carrier generation, transport and injection in TiN/TiO2 junction. Front. Phys. 17, 53509 (2022). https://doi.org/10.1007/s11467-022-1171-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1171-4

Keywords

Navigation