Skip to main content
Log in

Electromagnetically induced moiré optical lattices in a coherent atomic gas

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Electromagnetically induced optical (or photonic) lattices via atomic coherence in atomic ensembles have recently received great theoretical and experimental interest. We here conceive a way to generate electromagnetically induced moiré optical lattices — a twisted periodic pattern when two identical periodic patterns (lattices) are overlapped in a twisted angle (θ) — in a three-level coherent atomic gas working under electromagnetically induced transparency. We show that, changing the twisted angle and relative strength between the two constitutive sublattices, the moiré Bloch bands that are extremely flattened can always appear, resembling the typical flat-band and moiré physics found in other contexts. Dynamics of light propagation in the induced periodic structures demonstrating the unique linear localization and delocalization properties are also revealed. Our scheme can be implemented in a Rubidium atomic medium, where the predicted moiré optical lattices and flattened bands are naturally observable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, San Diego: Academic Press, 2003

    Google Scholar 

  2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed., Princeton: Princeton University Press, 2011

    Book  MATH  Google Scholar 

  3. O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices, Rev. Mod. Phys. 78(1), 179 (2006)

    Article  ADS  Google Scholar 

  4. I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, Light propagation and localization in modulated photonic lattices and waveguides, Phys. Rep. 518(1–2), 1 (2012)

    Article  ADS  Google Scholar 

  5. Y. V. Kartashov, G. E. Astrakharchik, B. A. Malomed, and L. Torner, Frontiers in multidimensional self-trapping of nonlinear fields and matter, Nat. Rev. Phys. 1(3), 185 (2019)

    Article  Google Scholar 

  6. L. Zeng and J. Zeng, Gap-type dark localized modes in a Bose-Einstein condensate with optical lattices, Adv. Photonics 1(4), 046004 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  7. L. Zeng and J. Zeng, Preventing critical collapse of higherorder solitons by tailoring unconventional optical diffraction and nonlinearities, Commun. Phys. 3(1), 26 (2020)

    Article  MathSciNet  Google Scholar 

  8. J. Shi and J. Zeng, Self-trapped spatially localized states in combined linear-nonlinear periodic potentials, Front. Phys. 15(1), 12602 (2020)

    Article  ADS  Google Scholar 

  9. Y. Y. Zheng, S. T. Chen, Z. P. Huang, S. X. Dai, B. Liu, Y. Y. Li, and S. R. Wang, Quantum droplets in two-dimensional optical lattices, Front. Phys. 16(2), 22501 (2021)

    Article  ADS  Google Scholar 

  10. J. Li and J. Zeng, Dark matter-wave gap solitons in dense ultracold atoms trapped by a one-dimensional optical lattice, Phys. Rev. A 103(1), 013320 (2021)

    Article  ADS  Google Scholar 

  11. J. Chen and J. Zeng, Dark matter-wave gap solitons of Bose-Einstein condensates trapped in optical lattices with competing cubic-quintic nonlinearities, Chaos Solitons Fractals 150, 111149 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Zhang, Z. Wu, M. R. Belić, H. Zheng, Z. Wang, M. Xiao, and Y. Zhang, Photonic floquet topological insulators in atomic ensembles, Laser Photon. Rev. 9(3), 331 (2015)

    Article  ADS  Google Scholar 

  13. F. Wen, H. Ye, X. Zhang, W. Wang, S. Li, H. Wang, Y. Zhang, and C. W. Qiu, Optically induced atomic lattice with tunable near-field and far-field diffraction patterns, Photon. Res. 5(6), 676 (2017)

    Article  Google Scholar 

  14. F. Wen, X. Zhang, H. Ye, W. Wang, H. Wang, Y. Zhang, Z. Dai, and C. W. Qiu, Efficient and tunable photo-induced honeycomb lattice in an atomic ensemble, Laser Photon. Rev. 12(9), 1800050 (2018)

    Article  ADS  Google Scholar 

  15. L. Zhao, Electromagnetically induced polarization grating, Sci. Rep. 8(1), 3073 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. C. Hang, W. Li, and G. Huang, Nonlinear light diffraction by electromagnetically induced gratings with PT symmetry in a Rydberg atomic gas, Phys. Rev. A 100(4), 043807 (2019)

    Article  ADS  Google Scholar 

  17. Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. D. Solnyshkov, Particle-like behavior of topological defects in linear wave packets in photonic graphene, Phys. Rev. Lett. 122(23), 233905 (2019)

    Article  ADS  Google Scholar 

  18. J. Yuan, C. Wu, L. Wang, G. Chen, and S. Jia, Observation of diffraction pattern in two-dimensional optically induced atomic lattice, Opt. Lett. 44(17), 4123 (2019)

    Article  ADS  Google Scholar 

  19. H. Zhang, J. Yuan, S. Dong, C. Wu, and L. Wang, Observation of an electromagnetically induced grating in cold 85Rb atoms, Appl. Sci. (Basel) 10(17), 5740 (2020)

    Article  Google Scholar 

  20. Z. Zhang, R. Wang, Y. Zhang, Y. V. Kartashov, F. Li, H. Zhong, H. Guan, K. Gao, F. Li, Y. Zhang, and M. Xiao, Observation of edge solitons in photonic graphene, Nat. Commun. 11(1), 1902 (2020)

    Article  ADS  Google Scholar 

  21. Z. Zhang, Y. Shen, S. Ning, S. Liang, Y. Feng, C. Li, Y. Zhang, and M. Xiao, Transport of light in a moving photonic lattice via atomic coherence, Opt. Lett. 46(17), 4096 (2021)

    Article  ADS  Google Scholar 

  22. S. Ning, J. Lu, S. Liang, Y. Feng, C. Li, Z. Zhang, and Y. Zhang, Talbot effect of an electromagnetically induced square photonic lattice assisted by a spatial light modulator, Opt. Lett. 46(19), 5035 (2021)

    Article  ADS  Google Scholar 

  23. Z. Shi and G. Huang, Selection and cloning of periodic optical patterns with a cold Rydberg atomic gas, Opt. Lett. 46(21), 5344 (2021)

    Article  ADS  Google Scholar 

  24. M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys. 77(2), 633 (2005)

    Article  ADS  Google Scholar 

  25. M. Fleischhauer and M. D. Lukin, Dark-state polaritons in electromagnetically induced transparency, Phys. Rev. Lett. 84(22), 5094 (2000)

    Article  ADS  Google Scholar 

  26. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Observation of coherent optical information storage in an atomic medium using halted light pulses, Nature 409(6819), 490 (2001)

    Article  ADS  Google Scholar 

  27. M. D. Lukin and A. Imamoğlu, Controlling photons using electromagnetically induced transparency, Nature 413(6853), 273 (2001)

    Article  ADS  Google Scholar 

  28. A. André and M. D. Lukin, Manipulating light pulses via dynamically controlled photonic band gap, Phys. Rev. Lett. 89(14), 143602 (2002)

    Article  ADS  Google Scholar 

  29. C. Hang, G. Huang, and V. V. Konotop, PT symmetry with a system of three-level atoms, Phys. Rev. Lett. 110(8), 083604 (2013)

    Article  ADS  Google Scholar 

  30. Z. Chen, Z. Bai, H. Li, C. Hang, and G. Huang, Storage and retrieval of (3+1)-dimensional weak-light bullets and vortices in a coherent atomic gas, Sci. Rep. 5(1), 8211 (2015)

    Article  Google Scholar 

  31. D. Xu, Z. Chen, and G. Huang, Ultraslow weak-light solitons and their storage and retrieval in a kagome-structured hollowcore photonic crystal fiber, Opt. Express 25(16), 19094 (2017)

    Article  ADS  Google Scholar 

  32. K. Zhang, Y. Liang, J. Lin, and H. Li, Controlling the stability of nonlinear optical modes via electromagnetically induced transparency, Phys. Rev. A 97(2), 023844 (2018)

    Article  ADS  Google Scholar 

  33. Z. Chen, H. Xie, Q. Li, and G. Huang, Stern-Gerlach deflection of optical Thirring solitons in a coherent atomic system, Phys. Rev. A 100(1), 013827 (2019)

    Article  ADS  Google Scholar 

  34. Z. Bai, W. Li, and G. Huang, Stable single light bullets and vortices and their active control in cold Rydberg gases, Opttica 6(3), 309 (2019)

    Article  ADS  Google Scholar 

  35. J. Ru, Z. Wu, Y. Zhang, F. Wen, and Y. Gu, Talbot effect in nonparaxial self-accelerating beams with electromagnetically induced transparency, Front. Phys. 15(5), 52503 (2020)

    Article  ADS  Google Scholar 

  36. J. Tang, Y. Deng, and C. Lee, Tunable photon blockade with a single atom in a cavity under electromagnetically induced transparency, Photon. Res. 9(7), 1226 (2021)

    Article  Google Scholar 

  37. Z. Chen and J. Zeng, Localized gap modes of coherently trapped atoms in an optical lattice, Opt. Express 29(3), 3011 (2021)

    Article  ADS  Google Scholar 

  38. Z. Chen and J. Zeng, Two-dimensional optical gap solitons and vortices in a coherent atomic ensemble loaded on optical lattices, Commun. Nonlinear Sci. Numer. Simul. 102, 105911 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. P. Wang, Y. Zheng, X. Chen, C. Huang, Y. V. Kartashov, L. Torner, V. V. Konotop, and F. Ye, Localization and delocalization of light in photonic moiré lattices, Nature 577(7788), 42 (2020)

    Article  ADS  Google Scholar 

  40. Q. Fu, P. Wang, C. Huang, Y. V. Kartashov, L. Torner, V. V. Konotop, and F. Ye, Optical soliton formation controlled by angle twisting in photonic moiré lattices, Nat. Photonics 14(11), 663 (2020)

    Article  ADS  Google Scholar 

  41. D. A. Steck, Rubidium 87 D Line Data. http://steck.us/alkalidata (revision 2.2.2, 9 July 2021)

  42. C. Huang, F. Ye, X. Chen, Y. V. Kartashov, V. V. Konotop, and L. Torner, Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials, Sci. Rep. 6(1), 32546 (2016)

    Article  ADS  Google Scholar 

  43. X. R. Mao, Z. K. Shao, H. Y. Luan, S. L. Wang, and R. M. Ma, Magic-angle lasers in nanostructured moiré superlattice, Nat. Nanotechnol. 16(10), 1099 (2021)

    Article  ADS  Google Scholar 

  44. A. González-Tudela and J. I. Cirac, Cold atoms in twistedbilayer optical potentials, Phys. Rev. A 100, 053604 (2019)

    Article  ADS  Google Scholar 

  45. T. Salamon, A. Celi, R. W. Chhajlany, I. Frérot, Maciej Lewenstein, L. Tarruell, and D. Rakshit, Simulating twistronics without a twist, Phys. Rev. Lett. 125, 030504 (2020)

    Article  ADS  Google Scholar 

  46. X.-W. Luo and C. Zhang, Spin-twisted optical lattices: Tunable flat bands and Larkin — Ovchinnikov superfluids, Phys. Rev. Lett. 126, 103201 (2021)

    Article  ADS  Google Scholar 

  47. Y. V. Kartashov, F. Ye, V. V. Konotop, and L. Torner, Multifrequency solitons in commensurate-incommensurate photonic moiré lattices. Phys. Rev. Lett. 127(16), 163902 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11704066, 12074423, 12074063), and Jiangxi Provincial Natural Science Foundation (Grant No. 20202BABL211013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Zeng.

Additional information

arXiv: 2202.11275. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1153-6.

Supplementary Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Liu, X. & Zeng, J. Electromagnetically induced moiré optical lattices in a coherent atomic gas. Front. Phys. 17, 42508 (2022). https://doi.org/10.1007/s11467-022-1153-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1153-6

Keywords

Navigation