Skip to main content
Log in

Fast quantum state transfer and entanglement for cavity-coupled many qubits via dark pathways

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Quantum state transfer (QST) and entangled state generation (ESG) are important building blocks for modern quantum information processing. To achieve these tasks, convention wisdom is to consult the quantum adiabatic evolution, which is time-consuming, and thus is of low fidelity. Here, using the shortcut to adiabaticity technique, we propose a general method to realize high-fidelity fast QST and ESG in a cavity-coupled many qubits system via its dark pathways, which can be further designed for high-fidelity quantum tasks with different optimization purpose. Specifically, with a proper dark pathway, QST and ESG between any two qubits can be achieved without decoupling the others, which simplifies experimental demonstrations. Meanwhile, ESG among all qubits can also be realized in a single step. In addition, our scheme can be implemented in many quantum systems, and we illustrate its implementation on superconducting quantum circuits. Therefore, we propose a powerful strategy for selective quantum manipulation, which is promising in cavity coupled quantum systems and could find many convenient applications in quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Rev. 41(2), 303 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. L. K. Grover, Quantum computers can search rapidly by using almost any transformation, Phys. Rev. Lett. 80(19), 4329 (1998)

    Article  ADS  Google Scholar 

  3. P. Král, I. Thanopulos, and M. Shapiro, Coherently controlled adiabatic passage, Rev. Mod. Phys. 79(1), 53 (2007)

    Article  ADS  Google Scholar 

  4. H. J. Kimble, The quantum internet, Nature 453(7198), 1023 (2008)

    Article  ADS  Google Scholar 

  5. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  6. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. X. T. Mo and Z. Y. Xue, Single-step multipartite entangled states generation from coupled circuit cavities, Front. Phys. 14(3), 31602 (2019)

    Article  ADS  Google Scholar 

  10. J. Xu, S. Li, T. Chen, and Z. Y. Xue, Nonadiabatic geometric quantum computation with optimal control on superconducting circuits, Front. Phys. 15(4), 41503 (2020)

    Article  ADS  Google Scholar 

  11. S. Li, P. Shen, T. Chen, and Z. Y. Xue, Noncyclic nonadiabatic holonomic quantum gates via shortcuts to adiabaticity, Front. Phys. 16(5), 51502 (2021)

    Article  ADS  Google Scholar 

  12. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network, Phys. Rev. Lett. 78(16), 3221 (1997)

    Article  ADS  Google Scholar 

  13. A. Olaya-Castro, N. F. Johnson, and L. Quiroga, Scheme for on-resonance generation of entanglement in time-dependent asymmetric two-qubit-cavity systems, Phys. Rev. A 70(2), 020301 (2004)

    Article  ADS  Google Scholar 

  14. N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Laser-induced population transfer by adiabatic passage techniques, Annu. Rev. Phys. Chem. 52(1), 763 (2001)

    Article  ADS  Google Scholar 

  15. K. Bergmann, H. Theuer, and B. Shore, Coherent population transfer among quantum states of atoms and molecules, Rev. Mod. Phys. 70(3), 1003 (1998)

    Article  ADS  Google Scholar 

  16. Z. R. Zhong, L. Chen, J. Q. Sheng, L. T. Shen, and S. B. Zheng, Multiphonon-resonance quantum Rabi model and adiabatic passage in a cavity-optomechanical system, Front. Phys. 17(1), 12501 (2022)

    Article  ADS  Google Scholar 

  17. M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch, High-fidelity quantum driving, Nat. Phys. 8(2), 147 (2012)

    Article  Google Scholar 

  18. E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, Shortcuts to adiabaticity, Adv. At. Mol. Opt. Phys. 62, 117 (2013)

    Article  ADS  Google Scholar 

  19. Y. Yan, Y. C. Li, A. Kinos, A. Walther, C. Y. Shi, L. Rippe, J. Moser, S. Kröll, and X. Chen, Inverse engineering of shortcut pulses for high fidelity initialization on qubits closely spaced in frequency, Opt. Express 27(6), 8267 (2019)

    Article  ADS  Google Scholar 

  20. S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, T. Busch, and J. G. Muga, Fast quasiadiabatic dynamics, Phys. Rev. A 92(4), 043406 (2015)

    Article  ADS  Google Scholar 

  21. Y. H. Kang, Y. H. Chen, Z. C. Shi, B. H. Huang, J. Song, and Y. Xia, Pulse design for multilevel systems by utilizing Lie transforms, Phys. Rev. A 97(3), 033407 (2018)

    Article  ADS  Google Scholar 

  22. X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, Shortcut to adiabatic passage in two- and three-level atoms, Phys. Rev. Lett. 105(12), 123003 (2010)

    Article  ADS  Google Scholar 

  23. A. Baksic, H. Ribeiro, and A. A. Clerk, Speeding up adiabatic quantum state transfer by using dressed states, Phys. Rev. Lett. 116(23), 230503 (2016)

    Article  ADS  Google Scholar 

  24. B. B. Zhou, A. Baksic, H. Ribeiro, C. G. Yale, F. J. Heremans, P. C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. D. Awschalom, Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system, Nat. Phys. 13(4), 330 (2017)

    Article  Google Scholar 

  25. Y. C. Li, D. Martínez-Cercós, S. Martínez-Garaot, X. Chen, and J. G. Muga, Hamiltonian design to prepare arbitrary states of four-level systems, Phys. Rev. A 97(1), 013830 (2018)

    Article  ADS  Google Scholar 

  26. P. W. Claeys, M. Pandey, D. Sels, and A. Polkovnikov, Floquet-engineering counterdiabatic protocols in quantum many-body systems, Phys. Rev. Lett. 123(9), 090602 (2019)

    Article  ADS  Google Scholar 

  27. R. Blatt and D. Wineland, Entangled states of trapped atomic ions, Nature 453(7198), 1008 (2008)

    Article  ADS  Google Scholar 

  28. C. Monroe and J. Kim, Scaling the ion trap quantum processor, Science 339(6124), 1164 (2013)

    Article  ADS  Google Scholar 

  29. C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, The atom-cavity microscope: Single atoms bound in orbit by single photons, Science 287(5457), 1447 (2000)

    Article  ADS  Google Scholar 

  30. R. J. Schoelkopf and S. M. Girvin, Wiring up quantum systems, Nature 451(7179), 664 (2008)

    Article  ADS  Google Scholar 

  31. M. Tavis and F. W. Cummings, Exact solution for an N-molecule — radiation-field Hamiltonian, Phys. Rev. 170(2), 379 (1968)

    Article  ADS  Google Scholar 

  32. P. Kurpiers, P. Magnard, T. Walter, B. Royer, M. Pechal, J. Heinsoo, Y. Salathé, A. Akin, S. Storz, J.C. Besse, S. Gasparinetti, A. Blais, and A. Wallraff, Deterministic quantum state transfer and remote entanglement using microwave photons, Nature 558(7709), 264 (2018)

    Article  ADS  Google Scholar 

  33. C. J. Axline, L. D. Burkhart, W. Pfaff, M. Z. Zhang, K. Chou, P. Campagne-Ibarcq, P. Reinhold, L. Frunzio, S. M. Girvin, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, Ondemand quantum state transfer and entanglement between remote microwave cavity memories, Nat. Phys. 14(7), 705 (2018)

    Article  Google Scholar 

  34. M. Mariantoni, H. Wang, T. Yamamoto, M. Neeley, R. C. Bialczak, Y. Chen, M. Lenander, E. Lucero, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, Y. Yin, J. Zhao, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Implementing the quantum von neumann architecture with superconducting circuits, Science 334(6052), 61 (2011)

    Article  ADS  Google Scholar 

  35. M. L. Peng, and H. Fan, Achieving the Heisenberg limit under general Markovian noise using quantum error correction without ancilla, Quantum Inform. Process. 19(8), 266 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. B. J. Liu and M. H. Yung, Coherent control with user-defined passage, Quantum Sci. Technol. 6(2), 025002 (2021)

    Article  ADS  Google Scholar 

  37. N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser, Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms, J. Magn. Reson. 172(2), 296 (2005)

    Article  ADS  Google Scholar 

  38. J. Zhou, S. Li, T. Chen, and Z. Y. Xue, Fast hybrid quantum state transfer and entanglement generation via no transition passage, Ann. Phys. (Berlin) 531(4), 1800402 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  39. M. Yun, F. Q. Guo, M. Li, L. L. Yan, M. Feng, Y. X. Li, and S. L. Su, Distributed geometric quantum computation based on the optimized-control-technique in a cavity-atom system via exchanging virtual photons, Opt. Express 29(6), 8737 (2021)

    Article  ADS  Google Scholar 

  40. M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science 339(6124), 1169 (2013)

    Article  ADS  Google Scholar 

  41. J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(7353), 589 (2011)

    Article  ADS  Google Scholar 

  42. X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. G. Wendin, Quantum information processing with superconducting circuits: A review, Rep. Prog. Phys. 80(10), 106001 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  44. X. Li, Y. Ma, J. Han, T. Chen, Y. Xu, W. Cai, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings, Phys. Rev. Appl. 10(5), 054009 (2018)

    Article  ADS  Google Scholar 

  45. J. Chu, D. Y. Li, X. P. Yang, S. Q. Song, Z. K. Han, Z. Yang, Y. Q. Dong, W. Zheng, Z. M. Wang, X. M. Yu, D. Lan, X. S. Tan, and Y. Yu, Realization of superadiabatic two-qubit gates using parametric modulation in superconducting circuits, Phys. Rev. Appl. 13(6), 064012 (2020)

    Article  ADS  Google Scholar 

  46. Z. Y. Xue, J. Zhou, and Z. D. Wang, Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits, Phys. Rev. A 92(2), 022320 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key-Area Research and Development Program of Guangdong Province (No. 2018B030326001), the National Natural Science Foundation of China (No. 11874156), and the Science and Technology Program of Guangzhou (No. 2019050001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Yuan Xue.

Additional information

arXiv: 2201.06810. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1147-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YX., Guan, ZY., Li, S. et al. Fast quantum state transfer and entanglement for cavity-coupled many qubits via dark pathways. Front. Phys. 17, 42507 (2022). https://doi.org/10.1007/s11467-021-1147-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1147-9

Keywords

Navigation