Skip to main content
Log in

Isotope separation of Potassium with a magneto-optical combined method

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Due to the similar physical and chemical properties, isotopes are usually hard to separate. On the other hand, the isotope shifts are very well separated in a high-resolution spectrum, making them possible to be addressed individually by lasers, thus separated. Here we report such an isotope separation experiment with Potassium atoms. The isotopes are independently optical pumped to the desired spin states, and then separated with a Stern-Gerlach scheme. A micro-capillary oven is used to collimate the atomic beam, and a Halbach-type magnet array is used to deflect the desired atoms. Finally, the 40K is enriched by two orders of magnitude. This magneto-optical combined method provides an effective way to separate isotopes and can be extended to other elements if the relevant optical pumping scheme is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Lyakhov, H. J. Lee, and A. N. Pechen, Some issues of industrial scale boron isotopes separation by the laser assisted retarded condensation (SILARC) method, Separ. Purif. Tech. 176, 402 (2017)

    Article  Google Scholar 

  2. T. R. Mazur, B. Klappauf, and M. G. Raizen, Demonstration of magnetically activated and guided isotope separation, Nat. Phys. 10(8), 601 (2014)

    Article  Google Scholar 

  3. H. M. Zhang and S. G. Li, Deep carbon recycling and isotope tracing: Review and prospect, Sci. China Earth Sci. 55, 1929 (2012)

    Article  ADS  Google Scholar 

  4. E. J. Bartelink and L. A. Chesson, Recent applications of isotope analysis to forensic anthropology, Forensic Sci. Res. 4(1), 29 (2019)

    Article  Google Scholar 

  5. D. J. Wilkinson, Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism, Mass Spectrom. Rev. 37(1), 57 (2018)

    Article  ADS  Google Scholar 

  6. R. A. Muller, Radioisotope dating wit a cyclotron, Science 196(4289), 489 (1977)

    Article  ADS  Google Scholar 

  7. C. Y. Chen, Y. M. Li, K. Bailey, T. P. O’Connor, L. Young, and Z. Lu, Ultrasensitive isotope trace analyses with a magneto-optical trap, Science 286(5442), 1139 (1999)

    Article  Google Scholar 

  8. A. L. Yergey and A. K. Yergey, Preparative scale mass spectrometry: A brief history of the calutron, J. Am. Soc. Mass Spectrom. 8(9), 943 (1997)

    Article  Google Scholar 

  9. L. O. Love, Electromagnetic separation of isotopes at Oak Ridge, Science 182(4110), 343 (1973)

    Article  ADS  Google Scholar 

  10. V. S. Letokhov, Laser isotope separation, Nature 277(5698), 605 (1979)

    Article  ADS  Google Scholar 

  11. T. Arisawa, Y. Maruyama, Y. Suzuki, and K. Shiba, Lithium isotope separation by laser, Appl. Phys. B 28, 73 (1982)

    Article  ADS  Google Scholar 

  12. J. A. Paisner, Atomic vapor laser isotope separation, Appl. Phys. B 46(3), 253 (1988)

    Article  ADS  Google Scholar 

  13. P. Greenland, Laser isotope separation, Contemp. Phys. 31(6), 405 (1990)

    Article  ADS  Google Scholar 

  14. T. Kieck, H. Dorrer, C. E. Dullmann, V. Gadelshin, F. Schneider, and K. Wendt, Highly efficient isotope separation and ion implantation of 163Ho for the ECHo project, Nucl. Instrum. Methods Phys. Res. A 945, 162602 (2019)

    Article  Google Scholar 

  15. A. Bernhardt, Isotope separation by laser deflection of an atomic beam, Appl. Phys. (Berl.) 9(1), 19 (1976)

    Article  ADS  Google Scholar 

  16. L. Li, Y. Wang, and M. Li, Separation of Li isotopes by laser defection of atomic beams, Chin. Phys. 3(1), 155 (1983)

    Google Scholar 

  17. X. Zhu, G. Huang, G. Mei, and D. Yang, Laser isotope enrichment of lithium by magnetic deflection of a polarized atomic beam, J. Phys. At. Mol. Opt. Phys. 25(15), 3307 (1992)

    Article  Google Scholar 

  18. M. Jerkins, I. Chavez, U. Even, and M. G. Raizen, Efficient isotope separation by single-photon atomic sorting, Phys. Rev. A 82(3), 033414 (2010)

    Article  ADS  Google Scholar 

  19. M. G. Raizen and B. Klappauf, Magnetically activated and guided isotope separation, New J. Phys. 14(2), 023059 (2012)

    Article  ADS  Google Scholar 

  20. B. DeMarco and D. Jin, Onset of Fermi degeneracy in a trapped atomic gas, Science 285(5434), 1703 (1999)

    Article  Google Scholar 

  21. E. Haller, J. Hudson, A. Kelly, D. A. Cotta, B. Peaudecerf, G. D. Bruce, and S. Kuhr, Single-atom imaging of fermions in a quantum-gas microscope, Nat. Phys. 11(9), 738 (2015)

    Article  Google Scholar 

  22. L. W. Cheuk, M. A. Nichols, M. Okan, T. Gersdorf, V. V. Ramasesh, W. S. Bakr, T. Lompe, and M. W. Zwierlein, Quantum-gas microscope for fermionic atoms, Phys. Rev. Lett. 114(19), 193001 (2015)

    Article  ADS  Google Scholar 

  23. M. A. Nichols, L. W. Cheuk, M. Okan, T. R. Hartke, E. Mendez, T. Senthil, E. Khatami, H. Zhang, and M. W. Zwierlein, Spin transport in a Mott insulator of ultracold fermions, Science 363(6425), 383 (2019)

    Article  ADS  Google Scholar 

  24. T. G. Tiecke, Properties of potassium, University of Amsterdam, The Netherlands, Thesis, 2010, pp 12–14

    Google Scholar 

  25. R. Senaratne, S. V. Rajagopal, Z. A. Geiger, K. M. Fujiwara, V. Lebedev, and D. M. Weld, Effusive atomic oven nozzle design using an aligned microcapillary array, Rev. Sci. Instrum. 86(2), 023105 (2015)

    Article  ADS  Google Scholar 

  26. P. Rosenberg, Collision cross sections of K atoms and K2 molecules in gases, Phys. Rev. 55(12), 1267 (1939)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the National Key R&D Program of China under Grant No. 2018YFA0307200, the National Natural Science Foundation of China under Grant No. 12074337, the Natural Science Foundation of Zhejiang Province under Grant Nos. LR21A040002 and LZ18A040001, Zhejiang Province Plan for Science and Technology No. 2020C01019, and the Fundamental Research Funds for the Central Universities under Grant Nos. 2020XZZX002-05 and 2021FZZX001-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yan.

Additional information

This article can also be found at https://doi.org/10.1007/s11467-021-1129-y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Z., Li, S. & Yan, B. Isotope separation of Potassium with a magneto-optical combined method. Front. Phys. 17, 32502 (2022). https://doi.org/10.1007/s11467-021-1129-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1129-y

Keywords

Navigation