Skip to main content
Log in

Resource reduction for simultaneous generation of two types of continuous variable nonclassical states

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We demonstrate experimentally the simultaneous generation and detection of two types of continuous variable nonclassical states from one type-0 phase-matching optical parametric amplifcation (OPA) and subsequent two ring flter cavities (RFCs). The output feld of the OPA includes the baseband ω0 and sideband modes ω0± nωf subjects to the cavity resonance condition, which are separated by two cascaded RFCs. The first RFC resonates with half the pump wavelength ω0 and the transmitted baseband component is a squeezed state. The refected felds of the frst RFC, including the sideband modes ω0± ωf, are separated by the second RFC, construct Einstein–Podolsky–Rosen entangled state. All freedoms, including the filter cavities for sideband separation and relative phases for the measurements of these sidebands, are actively stabilized. The noise variance of squeezed states is 10.2 dB below the shot noise limit (SNL), the correlation variances of both quadrature amplitude-sum and quadrature phase-diference for the entanglement state are 10.0 dB below the corresponding SNL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77(2), 513 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. S. Liu, Y. Lou, and J. Jing, Orbital angular momentum multiplexed deterministic all-optical quantum teleportation, Nat. Commun. 11(1), 3875 (2020)

    Article  ADS  Google Scholar 

  3. S. Shi, L. Tian, Y. Wang, Y. Zheng, C. Xie, and K. Peng, Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes, Phys. Rev. Lett. 125(7), 070502 (2020)

    Article  ADS  Google Scholar 

  4. X. Y. Li, Q. Pan, J. T. Jing, J. Zhang, C. D. Xie, and K. C. Peng, Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam, Phys. Rev. Lett. 88(4), 047904 (2002)

    Article  ADS  Google Scholar 

  5. J. T. Jing, J. Zhang, Y. Yan, F. G. Zhao, C. D. Xie, and K. C. Peng, Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables, Phys. Rev. Lett. 90(16), 167903 (2003)

    Article  ADS  Google Scholar 

  6. X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, Orbital-angular-momentum multiplexed continuous-variable entanglement from fourwave mixing in hot atomic vapor, Phys. Rev. Lett. 123(7), 070506 (2019)

    Article  ADS  Google Scholar 

  7. S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, Advances in quantum teleportation, Nat. Photonics 9(10), 641 (2015)

    Article  ADS  Google Scholar 

  8. R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, Quantum metrology for gravitational wave astronomy, Nat. Commun. 1(1), 121 (2010)

    Article  ADS  Google Scholar 

  9. F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, Quantum metrology with parametric amplifierbased photon correlation interferometers, Nat. Commun. 5(1), 3049 (2014)

    Article  ADS  Google Scholar 

  10. K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, A quantum enhanced prototype gravitational-wave detector, Nat. Phys. 4(6), 472 (2008)

    Article  Google Scholar 

  11. H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, First long-term application of squeezed states of light in a gravitational-wave observatory, Phys. Rev. Lett. 110(18), 181101 (2013)

    Article  ADS  Google Scholar 

  12. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection, Phys. Rev. Lett. 104(25), 251102 (2010)

    Article  ADS  Google Scholar 

  13. A. Thüring, R. Schnabel, H. Lück, and K. Danzmann, Detuned twin-signal-recycling for ultrahigh-precision interferometers, Opt. Lett. 32(8), 985 (2007)

    Article  ADS  Google Scholar 

  14. Q. Zhuang, Z. Zhang, and J. H. Shapiro, Distributed quantum sensing using continuous-variable multipartite entanglement, Phys. Rev. A 97(3), 032329 (2018)

    Article  ADS  Google Scholar 

  15. S. Liu, Y. Lou, and J. Jing, Interference-induced quantum squeezing enhancement in a two-beam phase-sensitive amplifer, Phys. Rev. Lett. 123(11), 113602 (2019)

    Article  ADS  Google Scholar 

  16. C. Xu, L. Zhang, S. Huang, T. Ma, F. Liu, H. Yonezawa, Y. Zhang, and M. Xiao, Sensing and tracking enhanced by quantum squeezing, Photon. Res. 7(6), A14 (2019)

    Article  Google Scholar 

  17. R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86(22), 5188 (2001)

    Article  ADS  Google Scholar 

  18. M. V. Larsen, X. S. Guo, C. R. Breum, J. S. Neergaard-Nielsen, and U. L. Andersen, Deterministic generation of a two-dimensional cluster state, Science 366(6463), 369 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. W. Asavanant, Y. Shiozawa, S. Yokoyama, B. Charoensombutamon, H. Emura, R. N. Alexander, S. Takeda, J. Yoshikawa, N. C. Menicucci, H. Yonezawa, and A. Furusawa, Generation of time-domain-multiplexed two-dimensional cluster state, Science 366(6463), 373 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. Z. Y. Ou, S. F. Pereira, and H. J. Kimble, Quantum noise reduction in optical amplifcation, Phys. Rev. Lett. 70(21), 3239 (1993)

    Article  ADS  Google Scholar 

  21. S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, 7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4, Appl. Phys. Lett. 89(6), 061116 (2006)

    Article  ADS  Google Scholar 

  22. Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement, Opt. Express 15(7), 4321 (2007)

    Article  ADS  Google Scholar 

  23. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, Observation of squeezed light with 10 dB quantum noise reduction, Phys. Rev. Lett. 100(3), 033602 (2008)

    Article  ADS  Google Scholar 

  24. M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB, Opt. Express 19(25), 25763 (2011)

    Article  ADS  Google Scholar 

  25. A. Schönbeck, F. Thies, and R. Schnabel, 13 dB squeezed vacuum states at 1550 nm from 12 mW external pump power at 775 nm, Opt. Lett. 43(1), 110 (2018)

    Article  ADS  Google Scholar 

  26. K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, Squeezing in the audio gravitational-wave detection band, Phys. Rev. Lett. 93(16), 161105 (2004)

    Article  ADS  Google Scholar 

  27. T. Eberle, V. Händchen, and R. Schnabel, Stable control of 10 dB two-mode squeezed vacuum states of light, Opt. Express 21(9), 11546 (2013)

    Article  ADS  Google Scholar 

  28. W. H. Zhang, J. R. Wang, Y. H. Zheng, Y. J. Wang, and K. C. Peng, Optimization of the squeezing factor by temperature-dependent phase shift compensation in a doubly resonant optical parametric oscillator, Appl. Phys. Lett. 115(17), 171103 (2019)

    Article  ADS  Google Scholar 

  29. W. H. Yang, S. P. Shi, Y. J. Wang, W. G. Ma, Y. H. Zheng, and K. C. Peng, Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fuctuations, Opt. Lett. 42(21), 4553 (2017)

    Article  ADS  Google Scholar 

  30. X. C. Sun, Y. J. Wang, L. Tian, Y. H. Zheng, and K. C. Peng, Detection of 13.8 dB squeezed vacuum states by optimizing the interference efciency and gain of balanced homodyne detection, Chin. Opt. Lett. 17(7), 072701 (2019)

    Article  ADS  Google Scholar 

  31. C. Cai, L. Ma, J. Li, H. Guo, K. Liu, H. X. Sun, R. G. Yang, and J. R. Gao, Generation of a continuous-variable quadripartite cluster state multiplexed in the spatial domain, Photon. Res. 6(5), 479 (2018)

    Article  Google Scholar 

  32. H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efciency, Phys. Rev. Lett. 117(11), 110801 (2016)

    Article  ADS  Google Scholar 

  33. D. F. Walls, Squeezed states of light, Nature 306(5939), 141 (1983)

    Article  ADS  Google Scholar 

  34. J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, Wavelength-multiplexed quantum networks with ultrafast frequency combs, Nat. Photonics 8(2), 109 (2014)

    Article  ADS  Google Scholar 

  35. E. H. Huntington, G. N. Milford, C. Robilliard, T. C. Ralph, O. Glöckl, U. L. Andersen, S. Lorenz, and G. Leuchs, Demonstration of the spatial separation of the entangled quantum sidebands of an optical feld, Phys. Rev. A 71(4), 041802(R) (2005)

    Article  ADS  Google Scholar 

  36. B. Hage, A. Samblowski, and R. Schnabel, Towards Einstein-Podolsky-Rosen quantum channel multiplexing, Phys. Rev. A 81(6), 062301 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  37. C. Schori, J. L. Sorensen, and E. S. Polzik, Narrow-band frequency tunable light source of continuous quadrature entanglement, Phys. Rev. A 66(3), 033802 (2002)

    Article  ADS  Google Scholar 

  38. Y. Ma, H. Miao, B. H. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel, and Y. Chen, Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement, Nat. Phys. 13(8), 776 (2017)

    Article  Google Scholar 

  39. M. J. Yap, P. Altin, T. G. McRae, B. J. J. Slagmolen, R. L. Ward, and D. E. McClelland, Generation and control of frequency-dependent squeezing via Einstein-Podolsky-Rosen entanglement, Nat. Photonics 14(4), 223 (2020)

    Article  ADS  Google Scholar 

  40. J. Südbeck, S. Steinlechner, M. Korobko, and R. Schnabel, Demonstration of interferometer enhancement through Einstein-Podolsky-Rosen entanglement, Nat. Photonics 14(4), 240 (2020)

    Article  ADS  Google Scholar 

  41. S. P. Shi, Y. J. Wang, L. Tian, J. R. Wang, X. C. Sun, and Y. H. Zheng, Observation of a comb of squeezed states with a strong squeezing factor by a bichromatic local oscillator, Opt. Lett. 45(8), 2419 (2020)

    Article  ADS  Google Scholar 

  42. H. J. Lee, H. Kim, M. Cha, and H. S. Moon, Simultaneous type-0 and type-II spontaneous parametric down-conversions in a single periodically poled KTiOPO4 crystal, Appl. Phys. B 108(3), 585 (2012)

    Article  ADS  Google Scholar 

  43. M. Pysher, A. Bahabad, P. Peng, A. Arie, and O. Pfster, Quasi-phase-matched concurrent nonlinearities in periodically poled KTiOPO4 for quantum computing over the optical frequency comb, Opt. Lett. 35(4), 565 (2010)

    Article  ADS  Google Scholar 

  44. M. R. Huo, J. L. Qin, Z. H. Yan, X. J. Jia, and K. C. Peng, Generation of two types of nonclassical optical states using an optical parametric oscillator with a PPKTP crystal, Appl. Phys. Lett. 109(22), 221101 (2016)

    Article  ADS  Google Scholar 

  45. S. P. Shi, Y. J. Wang, W. H. Yang, Y. H. Zheng, and K. C. Peng, Detection and perfect ftting of 13.2 dB squeezed vacuum states by considering green-light-induced-infrared absorption, Opt. Lett. 43(21), 5411 (2018)

    Article  ADS  Google Scholar 

  46. X. C. Sun, Y. J. Wang, L. Tian, S. P. Shi, Y. H. Zheng, and K. C. Peng, Dependence of the squeezing and antisqueezing factors of bright squeezed light on the seed beam power and pump beam noise, Opt. Lett. 44(7), 1789 (2019)

    Article  ADS  Google Scholar 

  47. L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Inseparability criterion for continuous variable systems, Phys. Rev. Lett. 84(12), 2722 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11654002, 11804207, 11874250, and 11804206), the National Key Research and Development Program of China (Grant No. 2016YFA0301401), the Program for Sanjin Scholar of Shanxi Province, the Key Research and Development Program of Shanxi (Grant No. 201903D111001), the Fund for Shanxi 1331 Project Key Subjects Construction, the Program for Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, and the Natural Science Foundation of Shanxi Province (Grant No. 201801D221006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Hui Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Shi, SP., Tian, YH. et al. Resource reduction for simultaneous generation of two types of continuous variable nonclassical states. Front. Phys. 16, 21502 (2021). https://doi.org/10.1007/s11467-020-1012-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-1012-2

Keywords

Navigation