Skip to main content
Log in

Probing intensity-field correlations of single-molecule surface-enhanced Raman-scattered light

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In the context of the quantum-mechanical description of single-molecule surface-enhanced Raman scattering, intensity-field correlation measurements of photons emitted from a plasmonic cavity are explored, theoretically, using the technique of conditional homodyne detection. The inelastic interplay between plasmons and vibrations of a diatomic molecule placed inside the cavity can be manifested in phase-dependent third-order fluctuations of the light recorded by the aforesaid technique, allowing us to reveal signatures of non-classicality (indicatives of squeezing) of the outgoing Raman photons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. C. Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects, Elsevier, 2009

  2. F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, Single-molecule opto-mechanics in “picocavities”, Science 354(6313), 726 (2016)

    Article  ADS  Google Scholar 

  3. A. Lombardi, M. K. Schmidt, L. Weller, W. M. Deacon, F. Benz, B. de Nijs, J. Aizpurua, and J. J. Baumberg, Pulsed molecular opto-mechanics in plasmonic nanocavities: From nonlinear vibrational instabilities to bond-breaking, Phys. Rev. X 8(1), 011016 (2018)

    Google Scholar 

  4. A. M. Kern, D. Zhang, M. Brecht, A. I. Chizhik, A. V. Failla, F. Wackenhut, and A. J. Meixner, Enhanced single-molecule spectroscopy in highly confined optical fields: From l/2-Fabry-Pérot resonators to plasmonic nano-antenas, Chem. Soc. Rev. 43(4), 1263 (2014)

    Article  Google Scholar 

  5. H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, Toward plasmon-induced photo-exitation of molecules, J. Phys. Chem. Lett. 1(16), 2470 (2010)

    Article  Google Scholar 

  6. R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature 498(7452), 82 (2013)

    Article  ADS  Google Scholar 

  7. P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. Hueso, J. Aizpurua, and R. Hillenbrand, Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots, Nat. Commun. 3(1), 684 (2012)

    Article  ADS  Google Scholar 

  8. S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, Seeing a single molecule vibrate through rime-resolved coherent anti-Stokes Raman scattering, Nat. Photonics 8(8), 650 (2014)

    Article  ADS  Google Scholar 

  9. R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, Single-molecule strong coupling at room temperature in plasmonic nanocavities, Nature 535(7610), 127 (2016)

    Article  ADS  Google Scholar 

  10. Y. Huang, Y. Fang, Z. Zhang, L. Zhu, and M. Sun, Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering, Light Sci. Appl. 3(8), e199 (2014)

    Article  ADS  Google Scholar 

  11. S. J. P. Kress, F. V. Antolinez, P. Richner, S. V. Jayanti, D. K. Kim, F. Prins, A. Riedinger, M. P. C. Fischer, S. Meyer, K. M. McPeak, D. Poulikakos, and D. J. Norris, Wedge waveguides and resonators for quantum plasmonics, Nano Lett. 15(9), 6267 (2015)

    Article  ADS  Google Scholar 

  12. C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. Tame, Quantum plasmonic sensing: Beyond the shot noise and diffraction limit, ACS Photonics 3(6), 992 (2016)

    Article  Google Scholar 

  13. F. Peyskens, A. Dhakal, P. van Dorpe, N. Le Thomas, and R. Baets, Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform, ACS Photonics 3(1), 102 (2016)

    Article  Google Scholar 

  14. M. D. Baaske and F. Vollmer, Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution, Nat. Photonics 10(11), 733 (2016)

    Article  ADS  Google Scholar 

  15. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling, Nano Lett. 10(3), 891 (2010)

    Article  ADS  Google Scholar 

  16. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett. 83(21), 4357 (1999)

    Article  ADS  Google Scholar 

  17. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates, Nano Lett. 5(8), 1569 (2005)

    Article  ADS  Google Scholar 

  18. W. Zhu and K. B. Crozier, Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering, Nat. Commun. 5(1), 5228 (2014)

    Article  ADS  Google Scholar 

  19. M. Takase, S. Yasuda, and K. Murakoshi, Single-site surface-enhanced Raman scattering beyond spectroscopy, Front. Phys. 11(2), 117803 (2016)

    Article  Google Scholar 

  20. R. Hanbury-Brown and R. Q. Twiss, Correlations between photons in two coherent beams of light, Nature 177(4497), 27 (1956)

    Article  ADS  Google Scholar 

  21. D. F. Walls and P. Zoller, Reduced quantum fluctuations in resonance fluorescence, Phys. Rev. Lett. 47(10), 709 (1981)

    Article  ADS  Google Scholar 

  22. R. Loudon and P. L. Knight, Squeezed light, J. Mod. Opt. 34(6–7), 709 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. H. J. Carmichael, H. M. Castro-Beltrán, G. T. Foster, and L. A. Orozco, Giant violations of classical inequalities through conditional homodyne detection of the quadrature amplitudes of light, Phys. Rev. Lett. 85(9), 1855 (2000)

    Article  ADS  Google Scholar 

  24. G. T. Foster, L. A. Orozco, H. M. Castro-Beltrán, and H. J. Carmichael, Quantum state reduction and conditional time evolution of wave-particle correlations in cavity QED, Phys. Rev. Lett. 85(15), 3149 (2000)

    Article  ADS  Google Scholar 

  25. G. T. Foster, W. P. Smith, J. E. Reiner, and L. A. Orozco, Third-order correlations in cavity quantum electrodynamics, J. Opt. B Quantum Semiclassical Opt. 4(4), 306 (2002)

    Article  Google Scholar 

  26. A. Denisov, H. M. Castro-Beltrán, and H. J. Carmichael, Time-asymmetric fluctuations of light and the breakdown of detailed balance, Phys. Rev. Lett. 88(24), 243601 (2002)

    Article  ADS  Google Scholar 

  27. H. J. Carmichael, G. T. Foster, L. A. Orozco, J. E. Reiner, and P. R. Rice, Intensity-field correlations of nonclassical light, Progress in Optics, E. Wolf (Ed.), Elsevier, 2004, p. 46

  28. A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, Coherent coupling of molecular resonators with a microcavity mode, Nat. Commun. 6(1), 5981 (2015)

    Article  ADS  Google Scholar 

  29. T. J. Kippenberg and K. J. Vahala, Cavity optomechanics, Opt. Express 15(25), 17172 (2007)

    Article  ADS  Google Scholar 

  30. M. K. Schmidt, R. Esteban, A. González-Tudela, G. Giedke, and J. Aizpurua, Quantum mechanical description of raman scattering from molecules in plasmonic cavities, ACS Nano 10(6), 6291 (2016)

    Article  Google Scholar 

  31. M. K. Schmidt, R. Esteban, F. Benz, J. J. Baumberg, and J. Aizpurua, Linking classical and molecular optomechanics descriptions of SERS, Faraday Discuss. 205, 31 (2017)

    Article  ADS  Google Scholar 

  32. P. Roelli, C. Galland, N. Piro, and T. J. Kippenberg, Molecular cavity opto-mechanics as a theory of plasmonenhanced Raman scattering, Nat. Nanotechnol. 11(2), 164 (2016)

    Article  ADS  Google Scholar 

  33. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)

    Article  ADS  Google Scholar 

  34. M. K. Dezfouli and S. Hughes, Quantum optics model of surface-enhanced Raman spectroscopy for arbitrarily shaped plasmonic resonators, ACS Photonics 4(5), 1245 (2017)

    Article  Google Scholar 

  35. H. J. Carmichael, An Open Systems Approach to Quantum Optics, Springer-Verlag, 1993

  36. C. A. Parra-Murillo, M. F. Santos, C. H. Monken, and A. Jorio, Stokes-anti-Stokes correlation in the inelastic scattering of light by matter and generalization of the Bose-Einstein population function, Phys. Rev. B 93(12), 125141 (2016)

    Article  ADS  Google Scholar 

  37. E. R. Marquina-Cruz and H. M. Castro-Beltrán, Nonclassicality of resonance fluorescence via amplitude-intensity field correlations, Laser Phys. 18(2), 157 (2008)

    Article  ADS  Google Scholar 

  38. H. M. Castro-Beltrán, Phase-dependent fluctuations of resonance fluorescence beyond the squeezing regime, Opt. Commun. 283(23), 4680 (2010)

    Article  ADS  Google Scholar 

  39. H. M. Castro-Beltrán, L. Gutiérrez, and L. Horvath, Squeezed versus non-Gaussian fluctuations in resonance fluorescence, Appl. Math. Inf. Sci. 9, 2849 (2015)

    MathSciNet  Google Scholar 

  40. H. M. Castro-Beltrán, R. Román-Ancheyta, and L. Gutiérrez, Phase-dependent fluctuations of intermittent resonance fluorescence, Phys. Rev. A 93(3), 033801 (2016)

    Article  ADS  Google Scholar 

  41. L. Gutiérrez, H. M. Castro-Beltrán, R. Román-Ancheyta, and L. Horvath, Large time-asymmetric quantum fluctuations in amplitude-intensity correlation measurements of V-type three-level atom resonance fluorescence, J. Opt. Soc. Am. B 34(11), 2301 (2017)

    Article  ADS  Google Scholar 

  42. J. E. Reiner, W. P. Smith, L. A. Orozco, H. J. Carmichael, and P. R. Rice, Time evolution and squeezing of the field amplitude in cavity QED, J. Opt. Soc. Am. B 18(12), 1911 (2001)

    Article  ADS  Google Scholar 

  43. C. E. Strimbu, J. Leach, and P. R. Rice, Conditioned homodyne detection at the single-photon level: Intensity-field correlations for a two-level atom in an optical parametric oscillator, Phys. Rev. A 71(1), 013807 (2005)

    Article  ADS  Google Scholar 

  44. F. Wang, X. Feng, and C. H. Oh, Intensity-intensity and intensity-amplitude correlation of microwave photons from a superconducting artificial atom, Laser Phys. Lett. 13(10), 105201 (2016)

    Article  ADS  Google Scholar 

  45. Q. Xu and K. Mølmer, Intensity and amplitude correlations in the fluorescence from atoms with interacting Rydberg states, Phys. Rev. A 92(3), 033830 (2015)

    Article  ADS  Google Scholar 

  46. Q. Xu, E. Greplova, B. Julsgaard, and K. Mølmer, Correlation functions and conditioned quantum dynamics in photodetection theory, Phys. Scr. 90(12), 128004 (2015)

    Article  ADS  Google Scholar 

  47. S. Gerber, D. Rotter, L. Slodicka, J. Eschner, H. J. Carmichael, and R. Blatt, Intensity-field correlations of single-atom resonance fluorescence, Phys. Rev. Lett. 102(18), 183601 (2009)

    Article  ADS  Google Scholar 

  48. W. Vogel, Squeezing and anomalous moments in resonance fluorescence, Phys. Rev. Lett. 67(18), 2450 (1991)

    Article  ADS  Google Scholar 

  49. W. Vogel, Homodyne correlation measurements with weak local oscillators, Phys. Rev. A 51(5), 4160 (1995)

    Article  ADS  Google Scholar 

  50. M. J. Collett, D. F. Walls, and P. Zoller, Spectrum of squeezing in resonance fluorescence, Opt. Commun. 52(2), 145 (1984)

    Article  ADS  Google Scholar 

  51. P. R. Rice and H. J. Carmichael, Nonclassical effects in optical spectra, J. Opt. Soc. Am. B 5(8), 1661 (1988)

    Article  ADS  Google Scholar 

  52. J. R. Johansson, P. D. Nation, and F. Nori, QuTiP 2: A Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 184(4), 1234 (2013)

    Article  ADS  Google Scholar 

  53. G. Nienhuis, Spectral correlations in resonance fluorescence, Phys. Rev. A 47(1), 510 (1993)

    Article  ADS  Google Scholar 

  54. E. del Valle, A. Gonzalez-Tudela, F. P. Laussy, C. Tejedor, and M. J. Hartmann, Theory of frequency-filtered and time-resolved N-photon correlations, Phys. Rev. Lett. 109(18), 183601 (2012)

    Article  ADS  Google Scholar 

  55. A. Frank, R. Lemus, M. Carvajal, C. Jung, and E. Ziemniak, SU(2) approximation to the coupling of Morse oscillators, Chem. Phys. Lett. 308(1–2), 91 (1999)

    Article  ADS  Google Scholar 

  56. M. Carvajal, R. Lemus, A. Frank, C. Jung, and E. Ziemniak, An extended SU(2) model for coupled Morse oscillators, Chem. Phys. 260(1–2), 105 (2000)

    Article  MATH  Google Scholar 

  57. M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, et al., Roadmap on plasmonics, J. Opt. 20, 043001 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I want to thank Prof. H. M. Castro-Beltrán for helpful suggestions. Thanks also to I. Ramos-Prieto for introducing me to the use of QuTip library in Python and for his help with Figs. 1 and 3, and Prof. J. Récamier for his kind hospitality at ICF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. de los Santos-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de los Santos-Sánchez, O. Probing intensity-field correlations of single-molecule surface-enhanced Raman-scattered light. Front. Phys. 14, 61601 (2019). https://doi.org/10.1007/s11467-019-0914-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-019-0914-3

Keywords

Navigation