Skip to main content
Log in

Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii–Moriya interactions

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The dynamics of measurement’s uncertainty via entropy for a one-dimensional Heisenberg XYZ mode is examined in the presence of an inhomogeneous magnetic field and Dzyaloshinskii–Moriya (DM) interaction. It shows that the uncertainty of interest is intensively in connection with the filed’s temperature, the direction-oriented coupling strengths and the magnetic field. It turns out that the stronger coupling strengths and the smaller magnetic field would induce the smaller measurement’s uncertainty of interest within the current spin model. Interestingly, we reveal that the evolution of the uncertainty exhibits quite different dynamical behaviors in antiferromagnetic (Ji > 0) and ferromagnetic (Ji < 0) frames. Besides, an analytical solution related to the systematic entanglement (i.e., concurrence) is also derived in such a scenario. Furthermore, it is found that the DM-interaction is desirably working to diminish the magnitude of the measurement’s uncertainty in the region of high-temperature. Finally, we remarkably offer a resultful strategy to govern the entropy-based uncertainty through utilizing quantum weak measurements, being of fundamentally importance to quantum measurement estimation in the context of solid-state-based quantum information processing and computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. Phys. 43(3–4), 172 (1927)

    ADS  MATH  Google Scholar 

  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  3. I. Bialynicki-Birula, Rényi entropy and the uncertainty relations, AIP Conf. Proc. 889, 52 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  4. E. H. Kennard, Zur Quantenmechanik einfacher Bewegungstypen, Z. Phys. 44(4–5), 326 (1927)

    ADS  MATH  Google Scholar 

  5. H. P. Robertson, The uncertainty principle, Phys. Rev. 34(1), 163 (1929)

    ADS  Google Scholar 

  6. L. Maccone and A. K. Pati, Stronger Uncertainty Relations for All Incompatible Observables., Phys. Rev. Lett. 113(26), 260401 (2014)

    ADS  Google Scholar 

  7. K. K. Wang, X. Zhan, Z. H. Bian, J. Li, Y. S. Zhang, and P. Xue, Experimental investigation of the stronger uncertainty relations for all incompatible observables, Phys. Rev. A 93(5), 052108 (2016)

    ADS  Google Scholar 

  8. K. Kraus, Complementary observables and uncertainty relations, Phys. Rev. D 35(10), 3070 (1987)

    ADS  MathSciNet  Google Scholar 

  9. H. Maassen and J. B. M. Uffink, Generalized entropic uncertainty relations, Phys. Rev. Lett. 60(12), 1103 (1988)

    ADS  MathSciNet  Google Scholar 

  10. A. E. Rastegin, Entropic uncertainty relations for successive measurements of canonically conjugate observables, Ann. Phys. (Berlin) 528(11–12), 835 (2016)

    ADS  MATH  Google Scholar 

  11. A. Ghasemi, M. R. Hooshmandasl, and M. K. Tavassoly, On the quantum information entropies and squeezing associated with the eigenstates of the isotonic oscillator, Phys. Scr. 84(3), 035007 (2011)

    ADS  MATH  Google Scholar 

  12. D. Wang, A. J. Huang, R. D. Hoehn, F. Ming, W. Y. Sun, J. D. Shi, L. Ye, and S. Kais, Entropic uncertainty relations for Markovian and non-Markovian processes under a structured bosonic reservoir, Sci. Rep. 7(1), 1066 (2017)

    ADS  Google Scholar 

  13. J. M. Renes and J. C. Boileau, Conjectured strong complementary information tradeoff, Phys. Rev. Lett. 103(2), 020402 (2009)

    ADS  Google Scholar 

  14. M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, The uncertainty principle in the presence of quantum memory, Nat. Phys. 6(9), 659 (2010)

    Google Scholar 

  15. R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement, Nat. Phys. 7(10), 757 (2011)

    Google Scholar 

  16. C. F. Li, J. S. Xu, X. Y. Xu, K. Li, and G. C. Guo, Experimental investigation of the entanglement-assisted entropic uncertainty principle, Nat. Phys. 7(10), 752 (2011)

    Google Scholar 

  17. Z. Jin, S. L. Su, A. D. Zhu, H. F. Wang, and S. Zhang, Engineering multipartite steady entanglement of distant atoms via dissipation, Front. Phys. 13(5), 134209 (2018)

    Google Scholar 

  18. P. J. Coles, R. Colbeck, L. Yu, and M. Zwolak, Uncertainty Relations from Simple Entropic Properties, Phys. Rev. Lett. 108(21), 210405 (2012)

    ADS  Google Scholar 

  19. Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85(2), 623 (2013)

    ADS  Google Scholar 

  20. M. J. W. Hall and H. M. Wiseman, Heisenberg-style bounds for arbitrary estimates of shift parameters including prior information, New J. Phys. 14(3), 033040 (2012)

    ADS  Google Scholar 

  21. C. S. Yu, Quantum coherence via skew information and its polygamy, Phys. Rev. A 95(4), 042337 (2017)

    ADS  Google Scholar 

  22. P. J. Coles and M. Piani, Complementary sequential measurements generate entanglement, Phys. Rev. A 89(1), 010302 (2014)

    ADS  Google Scholar 

  23. M. L. Hu and H. Fan, Upper bound and shareability of quantum discord based on entropic uncertainty relations, Phys. Rev. A 88(1), 014105 (2013)

    ADS  Google Scholar 

  24. X. Y. Chen, L. Z. Jiang, and Z. A. Xu, Precise detection of multipartite entanglement in four-qubit Greenberger–Horne–Zeilinger diagonal states, Front. Phys. 13(5), 130317 (2018)

    Google Scholar 

  25. X. M. Liu, W. W. Cheng, and J. M. Liu, Renormalization-group approach to quantum Fisher information in an XY model with staggered Dzyaloshinskii–Moriya interaction, Sci. Rep. 6, 19359 (2016)

    ADS  Google Scholar 

  26. X. M. Liu, Z. Z. Du, and J. M. Liu, Quantum Fisher information for periodic and quasiperiodic anisotropic XY chains in a transverse field, Quantum Inform. Process. 15(4), 1793 (2016)

    MathSciNet  MATH  Google Scholar 

  27. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Security of quantum key distribution using d-level systems, Phys. Rev. Lett. 88(12), 127902 (2002)

    ADS  Google Scholar 

  28. F. Grosshans and N. J. Cerf, Continuous-variable quantum cryptography is secure against non-Gaussian attacks, Phys. Rev. Lett. 92(4), 047905 (2004)

    ADS  Google Scholar 

  29. F. Dupuis, O. Fawzi, and S. Wehner, Entanglement Sampling and Applications, IEEE Trans. Inf. Theory 61(2), 1093 (2015)

    MathSciNet  MATH  Google Scholar 

  30. R. Konig, S. Wehner, and J. Wullschleger, Unconditional security from noisy quantum storage, IEEE Trans. Inf. Theory 58(3), 1962 (2012)

    MathSciNet  MATH  Google Scholar 

  31. G. Vallone, D. G. Marangon, M. Tomasin, and P. Villoresi, Quantum randomness certified by the uncertainty principle, Phys. Rev. A 90(5), 052327 (2014)

    ADS  Google Scholar 

  32. C. A. Miller and Y. Shi, Proceedings of ACM STOC, New York: ACM Press, 2014, pp 417–426

    Google Scholar 

  33. D. Mondal, S. Bagchi, and A. K. Pati, Tighter uncertainty and reverse uncertainty relations, Phys. Rev. A 95(5), 052117 (2017)

    ADS  Google Scholar 

  34. A. Riccardi, C. Macchiavello, and L. Maccone, Tight entropic uncertainty relations for systems with dimension three to five, Phys. Rev. A 95(3), 032109 (2017)

    ADS  MathSciNet  Google Scholar 

  35. Z. Y. Xu, W. L. Yang, and M. Feng, Quantum-memoryassisted entropic uncertainty relation under noise, Phys. Rev. A 86(1), 012113 (2012)

    ADS  Google Scholar 

  36. Z. Y. Zhang, D. X. Wei, and J. M. Liu, Entropic uncertainty relation of a two-qutrit Heisenberg spin model in nonuniform magnetic fields and its dynamics under intrinsic decoherence, Laser Phys. Lett. 15(6), 065207 (2018)

    ADS  Google Scholar 

  37. M. Yu and M. F. Fang, Controlling the quantummemory-assisted entropic uncertainty relation by quantum-jump-based feedback control in dissipative environments, Quantum Inform. Process. 16(9), 213 (2017)

    ADS  MATH  Google Scholar 

  38. Y. L. Zhang, M. F. Fang, G. D. Kang, and Q. P. Zhou, Reducing quantum-memory-assisted entropic uncertainty by weak measurement and weak measurement reversal, Int. J. Quant. Inf. 13(05), 1550037 (2015)

    MATH  Google Scholar 

  39. H. M. Zou, M. F. Fang, B. Y. Yang, Y. N. Guo, W. He, and S. Y. Zhang, The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments, Phys. Scr. 89(11), 115101 (2014)

    ADS  Google Scholar 

  40. L. J. Jia, Z. H. Tian, and J. L. Jing, Entropic uncertainty relation in de Sitter space, Ann. Phys. 353, 37 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  41. A. J. Huang, J. D. Shi, D. Wang, and L. Ye, Steering quantum-memory-assisted entropic uncertainty under unital and nonunital noises via filtering operations, Quantum Inform. Process. 16(2), 46 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  42. X. Zheng and G. F. Zhang, The effects of mixedness and entanglement on the properties of the entropic uncertainty in Heisenberg model with Dzyaloshinski-Moriya interaction, Quantum Inform. Process. 16(1), 1 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  43. D. Wang, F. Ming, A. J. Huang, W. Y. Sun, J. D. Shi, and L. Ye, Exploration of quantum-memory-assisted entropic uncertainty relations in a noninertial frame, Laser Phys. Lett. 14(5), 055205 (2017)

    ADS  Google Scholar 

  44. D. Wang, W. N. Shi, R. D. Hoehn, F. Ming, W. Y. Sun, S. Kais, and L. Ye, Effects of Hawking radiation on the entropic uncertainty in a Schwarzschild space-time, Ann. Phys. (Berlin) 530(9), 1800080 (2018)

    Google Scholar 

  45. Z. M. Huang, Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field, Quantum Inform. Process. 17(4), 73 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Z. Y. Zhang, J. M. Liu, Z. F. Hu, and Y. Z. Wang, Entropic uncertainty relation for dirac particles in Garfinkle-Horowitz-Strominger dilation space-time, Ann. Phys. (Berlin) 530(11), 1800208 (2018)

    ADS  Google Scholar 

  47. L. M. Yang, B. Chen, S. M. Fei, and Z. X. Wang, Dynamics of coherence-induced state ordering under Markovian channels, Front. Phys. 13(5), 130310 (2018)

    Google Scholar 

  48. J. W. Zhou, P. F. Wang, F. Z. Shi, P. Huang, X. Kong, X. K. Xu, Q. Zhang, Z. X. Wang, X. Rong, and J. F. Du, Quantum information processing and metrology with color centers in diamonds, Front. Phys. 9(5), 587 (2014)

    Google Scholar 

  49. P. F. Yu, J. G. Cai, J. M. Liu, and G. T. Shen, Teleportation via a two-qubit Heisenberg XYZ model in the presence of phase decoherence, Physica A 387(18), 4723 (2008)

    ADS  Google Scholar 

  50. R. Daneshmand and M. K. Tavassoly, The generation and properties of new classes of multipartite entangled coherent squeezed states in a conducting cavity, Ann. Phys. (Berlin) 529(5), 1600246 (2017)

    ADS  Google Scholar 

  51. M. Qin, X. Wang, Y. B. Li, Z. Bai, and S. J. Lin, Effects of inhomogeneous magnetic fields and different Dzyaloshinskii–Moriya interaction on entanglement and teleportation in a two-qubit Heisenberg XYZ chain, Chin. Phys. C 37(11), 113102 (2013)

    ADS  Google Scholar 

  52. G. Bowen and S. Bose, Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity, Phys. Rev. Lett. 87(26), 267901 (2001)

    ADS  Google Scholar 

  53. W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80(10), 2245 (1998)

    ADS  MATH  Google Scholar 

  54. Y. Aharonov, D. Z. Albert, and L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett. 60(14), 1351 (1988)

    ADS  Google Scholar 

  55. A. N. Korotkov, Continuous quantum measurement of a double dot, Phys. Rev. B 60(8), 5737 (1999)

    ADS  Google Scholar 

  56. A. N. Korotkov and A. N. Jordan, Undoing a weak quantum measurement of a solid-state qubit, Phys. Rev. Lett. 97(16), 166805 (2006)

    ADS  Google Scholar 

  57. X. P. Liao, M. S. Rong, and M. F. Fang, Protecting and enhancing spin squeezing from decoherence using weak measurements, Laser Phys. Lett. 14(6), 065201 (2017)

    ADS  Google Scholar 

  58. R. Y. Yang and J. M. Liu, Enhancing the fidelity of remote state preparation by partial measurements, Quantum Inform. Process. 16(5), 125 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  59. A. N. Korotkov and K. Keane, Decoherence suppression by quantum measurement reversal, Phys. Rev. A 81(4), 040103 (2010)

    ADS  Google Scholar 

  60. S. C. Wang, Z. W. Yu, W. J. Zou, and X. B. Wang, Protecting quantum states from decoherence of finite temperature using weak measurement, Phys. Rev. A 89(2), 022318 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61601002 and 11575001), Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139), and the Fund of CAS Key Laboratory of Quantum Information (Grant No. KQI201701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YY., Sun, WY., Shi, WN. et al. Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii–Moriya interactions. Front. Phys. 14, 31601 (2019). https://doi.org/10.1007/s11467-018-0880-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0880-1

Keywords

Navigation