Skip to main content
Log in

Molecular dynamics study of nanodroplet diffusion on smooth solid surfaces

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We perform molecular dynamics simulations of Lennard–Jones particles in a canonical ensemble to study the diffusion of nanodroplets on smooth solid surfaces. Using the droplet-surface interaction to realize a hydrophilic or hydrophobic surface and calculating the mean square displacement of the center-of-mass of the nanodroplets, the random motion of nanodroplets could be characterized by shorttime subdiffusion, intermediate-time superdiffusion, and long-time normal diffusion. The short-time subdiffusive exponent increases and almost reaches unity (normal diffusion) with decreasing droplet size or enhancing hydrophobicity. The diffusion coefficient of the droplet on hydrophobic surfaces is larger than that on hydrophilic surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, High-resolution inkjet printing of all-polymer transistor circuits, Science 290(5499), 2123 (2000)

    Article  ADS  Google Scholar 

  2. J. A. Lim, W. H. Lee, H. S. Lee, J. H. Lee, Y. D. Park, and K. Cho, Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet, Adv. Funct. Mater. 18(2), 229 (2008)

    Article  Google Scholar 

  3. J. B. Boreyko and C. H. Chen, Self-propelled dropwise condensate on superhydrophobic surfaces, Phys. Rev. Lett. 103(18), 184501 (2009)

    Article  ADS  Google Scholar 

  4. R. N. Leach, F. Stevens, S. C. Langford, and J. T. Dickinson, Dropwise condensation: Experiments and simulations of nucleation and growth of water drops in a cooling system, Langmuir 22(21), 8864 (2006)

    Article  Google Scholar 

  5. R. Blossey, Self-cleaning surfaces — Virtual realities, Nat. Mater. 2(5), 301 (2003)

    Article  ADS  Google Scholar 

  6. X. Deng, L. Mammen, H. J. Butt, and D. Vollmer, Candle soot as a template for a transparent robust superamphiphobic coating, Science 335(6064), 67 (2012)

    Article  ADS  Google Scholar 

  7. X. Yao, H. Bai, J. Ju, D. Zhou, J. Li, H. Zhang, B. Yang, and L. Jiang, Running droplet of interfacial chemical reaction flow, Soft Matter 8(22), 5988 (2012)

    Article  ADS  Google Scholar 

  8. A. Fallah-Araghi, K. Meguellati, J. C. Baret, A. E. Harrak, T. Mangeat, M. Karplus, S. Ladame, C. M. Marques, and A. D. Griffiths, Enhanced chemical synthesis at soft interfaces: A universal reaction-adsorption mechanism in microcompartments, Phys. Rev. Lett. 112(2), 028301 (2014)

    Article  ADS  Google Scholar 

  9. Y. J. Sun, T. Huang, J. F. Zhao, and Y. Chen, Evaporation of a nanodroplet on a rough substrate, Front. Phys. 12(5), 126401 (2017)

    Article  Google Scholar 

  10. J. Zhang, F. Leroy, and F. Müller-Plathe, Evaporation of nanodroplets on heated substrates: A molecular dynamics simulation study, Langmuir 29(31), 9770 (2013)

    Article  Google Scholar 

  11. C. Andrieu, D. A. Beysens, V. S. Nikolayev, and Y. Pomeau, Coalescence of sessile drops, J. Fluid Mech. 453, 427 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. N. Savva, S. Kalliadasis, and G. A. Pavliotis, Twodimensional droplet spreading over random topographical substrates, Phys. Rev. Lett. 104(8), 084501 (2010)

    Article  ADS  Google Scholar 

  13. N. Patra, B. Wang, and P. Král, Nanodroplet activated and guided folding of graphene nanostructures, Nano Lett. 9(11), 3766 (2009)

    Article  ADS  Google Scholar 

  14. J. M. Sancho, A. M. Lacasta, K. Lindenberg, I. M. Sokolov, and A. H. Romero, Diffusion on a solid surface: Anomalous is normal, Phys. Rev. Lett. 92(25), 250601 (2004)

    Article  ADS  Google Scholar 

  15. L. Zhu, C. W. Brian, S. F. Swallen, P. T. Straus, M. D. Ediger, and L. Yu, Surface self-diffusion of an organic glass, Phys. Rev. Lett. 106(25), 256103 (2011)

    Article  ADS  Google Scholar 

  16. J. H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, and R. Metzler, In Vivo anomalous diffusion and weak ergodicity breaking of lipid granules, Phys. Rev. Lett. 106(4), 048103 (2011)

    Article  ADS  Google Scholar 

  17. C. M. Dobson, Protein folding and misfolding, Nature 426(6968), 884 (2003)

    Article  ADS  Google Scholar 

  18. G. M. Whitesides, J. P. Mathias, and C. T. Seto, Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures, Science 254(5036), 1312 (1991)

    Article  ADS  Google Scholar 

  19. S. Wang and Y. Zhu, Molecular diffusion on surface tethered polymer layers: Coupling of molecular thermal fluctuation and polymer chain dynamics, Soft Matter 6(19), 4661 (2010)

    Article  ADS  Google Scholar 

  20. F. Klappenberger, Echoes from diffusion, Nat. Mater. 15(4), 374 (2016)

    Article  ADS  Google Scholar 

  21. F. Celestini, Diffusion of a liquid nanoparticle on a disordered substrate, Phys. Rev. B 70(11), 115402 (2004)

    Article  ADS  Google Scholar 

  22. G. D. Förster, F. Rabilloud, and F. Calvo, Adsorption of metal nanoparticles on carbon substrates and epitaxial graphene: Assessing models for dispersion forces, Phys. Rev. B 91, 245433 (2015)

    Article  ADS  Google Scholar 

  23. T. A. Ho, D. V. Papavassiliou, L. L. Lee, and A. Striolo, Liquid water can slip on a hydrophilic surface, Proc. Natl. Acad. Sci. USA 108(39), 16170 (2011)

    Article  ADS  Google Scholar 

  24. S. Daniel, M. K. Chaudhury, and J. C. Chen, Fast drop movements resulting from the phase change on a gradient surface, Science 291(5504), 633 (2001)

    Article  ADS  Google Scholar 

  25. Z. Li and H. Wang, Drag force, diffusion coefficient, and electric mobility of small particles (I): Theory applicable to the free-molecule regime, Phys. Rev. E 68(6), 061206 (2003)

    Google Scholar 

  26. C. Li, J. Huang, and Z. Li, A relation for nanodroplet diffusion on smooth surfaces, Sci. Rep. 6, 26488 (2016)

    Article  ADS  Google Scholar 

  27. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1), 1 (1995)

    Article  ADS  MATH  Google Scholar 

  28. J. Davoodi, M. Safaralizade, and M. Yarifard, Molecular dynamics simulation of a gold nanodroplet in contact with graphene, Mater. Lett. 178, 205 (2016)

    Article  Google Scholar 

  29. D. J. Evans and B. L. Holian, The Nose–Hoover thermostat, J. Chem. Phys. 83(8), 4069 (1985)

    Article  ADS  Google Scholar 

  30. K. Yasuoka, M. Matsumoto, and Y. Kataoka, Evaporation and condensation at a liquid surface (I): Argon, J. Chem. Phys. 101(9), 7904 (1994)

    Article  ADS  Google Scholar 

  31. K. Yasuoka and M. Matsumoto, Molecular dynamics of homogeneous nucleation in the vapor phase (I): Lennard-Jones fluid, J. Chem. Phys. 109(19), 8451 (1998)

    Article  ADS  Google Scholar 

  32. N. Kumar, U. Harbola, and K. Lindenberg, Memoryinduced anomalous dynamics: Emergence of diffusion, subdiffusion, and superdiffusion from a single random walk model, Phys. Rev. E 82(2), 021101 (2010)

    Google Scholar 

  33. W. Paul, Anomalous diffusion in polymer melts, Chem. Phys. 284(1–2), 59 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11675008 and 21434001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, ZX., Huang, T. & Chen, Y. Molecular dynamics study of nanodroplet diffusion on smooth solid surfaces. Front. Phys. 13, 137804 (2018). https://doi.org/10.1007/s11467-018-0772-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0772-4

Keywords

Navigation