Skip to main content
Log in

Discrete ellipsoidal statistical BGK model and Burnett equations

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

A new discrete Boltzmann model, the discrete ellipsoidal statistical Bhatnagar–Gross–Krook (ESBGK) model, is proposed to simulate nonequilibrium compressible flows. Compared with the original discrete BGK model, the discrete ES-BGK has a flexible Prandtl number. For the discrete ES-BGK model in the Burnett level, two kinds of discrete velocity model are introduced and the relations between nonequilibrium quantities and the viscous stress and heat flux in the Burnett level are established. The model is verified via four benchmark tests. In addition, a new idea is introduced to recover the actual distribution function through the macroscopic quantities and their space derivatives. The recovery scheme works not only for discrete Boltzmann simulation but also for hydrodynamic ones, for example, those based on the Navier–Stokes or the Burnett equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Tsien, Superaerodynamics, Mechanics of Rarefied Gases, Collected Works of H. S. Tsien, 13(12), 406 (2012)

    Article  Google Scholar 

  2. S. Ching, Rarefied Gas Dynamics, Berlin Heidelberg: Springer, 2005

    Google Scholar 

  3. W. Chen, W. Zhao, Z. Jiang, et al., A review of moment equations for rarefied gas dynamics, Physics of Gases 1(5), 9 (2016)

    Google Scholar 

  4. C. Ho and Y. Tai, Micro-electro-mechanical-systems (MEMS) and fluid flows, Annu. Rev. Fluid Mech. 30(1), 579 (1998)

    Article  ADS  Google Scholar 

  5. G. Karniadakis and A. Beşkök, Microflows: Fundamentals and Simulation, Springer, 2005

    MATH  Google Scholar 

  6. Y. Zheng and H. Struchtrup, Burnett equations for the ellipsoidal statistical BGK model, Contin. Mech. Thermodyn. 16(1–2), 97 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. L. Wu, C. White, T. J. Scanlon, J. M. Reese, and Y. Zhang, Deterministic numerical solutions of the Boltzmann equation using the fast spectral method, J. Comput. Phys. 250(250), 27 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford: Clarendon Press, 2003

    Google Scholar 

  9. K. Xu and J. C. Huang, A unified gas-kinetic scheme for continuum and rarefied flows, J. Comput. Phys. 229(20), 7747 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. C. Liu, K. Xu, Q. Sun, et al., A unified gas-kinetic scheme for continuum and rarefied flows (IV), Commun. Comput. Phys. 14(5), 1147 (2014)

    Google Scholar 

  11. L. Yang, C. Shu, J. Wu, and Y. Wang, Numerical simulation of flows from free molecular regime to continuum regime by a DVM with streaming and collision processes, J. Comput. Phys. 306, 291 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Z. Guo, K. Xu, and R. Wang, Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case, Phys. Rev. E 88(3), 033305 (2013)

    Article  ADS  Google Scholar 

  13. Z. Guo, R. Wang, and K. Xu, Discrete unified gas kinetic scheme for all Knudsen number flows (II): Thermal compressible case, Phys. Rev. E 91(3), 033313 (2015)

    Article  ADS  Google Scholar 

  14. Y. Zhang, R. Qin, and D. Emerson, Lattice Boltzmann simulation of rarefied gas flows in microchannels, Phys. Rev. E 71(4), 047702 (2005)

    Article  ADS  Google Scholar 

  15. Y. Zhang, R. Qin, Y. Sun, R. W. Barber, and D. R. Emerson, Gas flow in microchannels–a lattice Boltzmann method approach, J. Stat. Phys. 121(1–2), 257 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. X. Shan, X. F. Yuan, and H. Chen, Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation, J. Fluid Mech. 550(-1), 413 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. J. Meng, Y. Zhang, N. G. Hadjiconstantinou, G. A. Radtke, and X. Shan, Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows, J. Fluid Mech. 718, 347 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. M. Watari, Is the lattice Boltzmann method applicable to rarefied gas flows? Comprehensive evaluation of the higher-order models, J. Fluids Eng. 138(1), 011202 (2015)

    Article  Google Scholar 

  19. A. Xu, G. Zhang, and Y. Ying, Progress of discrete Boltzmann modeling and simulation of combustion system, Acta Physica Sinica 64(18), 184701 (2015)

    Google Scholar 

  20. A. Xu, G. Zhang, and Y. Gan, Progress in studies on discrete Boltzmann modeling of phase separation process, Mech. Eng. 38(4), 361 (2016)

    Google Scholar 

  21. A. Xu, G. Zhang, Y. Ying, et al., Complex fields in heterogeneous materials under shock: Modeling, simulation and analysis, Sci. China: Phys. Mech. & Astron. 59(5), 650501 (2016)

    Google Scholar 

  22. Y. Gan, A. Xu, G. Zhang, and S. Succi, Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects, Soft Matter 11(26), 5336 (2015)

    Article  ADS  Google Scholar 

  23. H. Lai, A. Xu, G. Zhang, Y. Gan, Y. Ying, and S. Succi, Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows, Phys. Rev. E 94(2), 023106 (2016)

    Article  ADS  Google Scholar 

  24. F. Chen, A. Xu, and G. Zhang, Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh–Taylor Instability, Front. Phys. 11(6), 114703 (2016)

    Article  Google Scholar 

  25. C. Lin, A. Xu, G. Zhang, and Y. Li, Doubledistribution- function discrete Boltzmann model for combustion, Combust. Flame 164, 137 (2016)

    Article  Google Scholar 

  26. Y. Zhang, A. Xu, G. Zhang, C. Zhu, and C. Lin, Kinetic modeling of detonation and effects of negative temperature coefficient, Combust. Flame 173, 483 (2016)

    Article  Google Scholar 

  27. C. Lin, A. Xu, G. Zhang, Y. Li, and S. Succi, Polarcoordinate lattice Boltzmann modeling of compressible flows, Phys. Rev. E 89(1), 013307 (2014)

    Article  ADS  Google Scholar 

  28. H. Liu, W. Kang, Q. Zhang, Y. Zhang, H. Duan, and X. T. He, Molecular dynamics simulations of microscopic structure of ultrastrong shock waves in dense helium, Front. Phys. 11(6), 115206 (2016)

    Article  Google Scholar 

  29. H. Liu, Y. Zhang, W. Kang, P. Zhang, H. Duan, and X. T. He, Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons, Phys. Rev. E 95(2), 023201 (2017)

    Article  ADS  Google Scholar 

  30. H. Liu, W. Kang, H. Duan, P. Zhang, and X. T. He, Recent progresses on numerical investigations of microscopic structure of strong shock waves in fluid, Sci. China: Phys. Mech. & Astron. 47(7), 070003 (2017)

    ADS  Google Scholar 

  31. W. Kang, U. Landman, and A. Glezer, Thermal bending of nanojets: Molecular dynamics simulations of an asymmetrically heated nozzle, Appl. Phys. Lett. 93(12), 123116 (2008)

    Article  ADS  Google Scholar 

  32. P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases (I): Small amplitude processes in charged and neutral one-component systems, Phys. Rev. 94(3), 511 (1954)

    Article  ADS  MATH  Google Scholar 

  33. Holway, New statistical models for kinetic theory: Methods of construction, Phys. Fluids 9(9), 1658 (1966)

  34. E. M. Shakhov, Generalization of the Krook kinetic relaxation equation, Fluid Dyn. 3(5), 95 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  35. V. A. Rykov, A model kinetic equation for a gas with rotational degrees of freedom, Fluid Dyn. 10(6), 959 (1976)

    Article  ADS  Google Scholar 

  36. P. Andries, P. Le Tallec, J. P. Perlat, and B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number, Eur. J. Mech. BFluids 19(6), 813 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Y. Zheng and H. Struchtrup, Burnett equations for the ellipsoidal statistical BGK model, Contin. Mech. Thermodyn. 16(1–2), 97 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Y. Gan, A. Xu, G. Zhang, and Y. Yang, Lattice BGK kinetic model for high-speed compressible flows: Hydrodynamic and nonequilibrium behaviors, EPL 103(2), 24003 (2013)

    Article  ADS  Google Scholar 

  39. H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows, Berlin Heidelberg: Springer, 2005

    Book  MATH  Google Scholar 

  40. M. Watari and M. Tsutahara, Two-dimensional thermal model of the finite-difference lattice Boltzmann method with high spatial isotropy, Phys. Rev. E 67(3), 036306 (2003)

    Article  ADS  Google Scholar 

  41. K. Xu, A gas-kinetic BGK Scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method, J. Comput. Phys. 171(1), 289 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Z. Guo, C. Zheng, and B. Shi, An extrapolation method for boundary conditions in lattice Boltzmann method, Phys. Fluids 14(6), 2007 (2002)

    Article  ADS  MATH  Google Scholar 

  43. P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys. 54(1), 115 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. G. Pham-Van-Diep, D. Erwin, and E. P. Muntz, Nonequilibrium molecular motion in a hypersonic shock wave, Science 245(4918), 624 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the National Natural Science Foundation of China (Grant Nos. 11475028, 11772064, 11502117, and U1530261), and Science Challenge Project (Grant Nos. JCKY2016212A501 and TZ2016002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Guo Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YD., Xu, AG., Zhang, GC. et al. Discrete ellipsoidal statistical BGK model and Burnett equations. Front. Phys. 13, 135101 (2018). https://doi.org/10.1007/s11467-018-0749-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0749-3

Keywords

Navigation