Skip to main content
Log in

Determining H 0 using a model-independent method

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

By using type Ia supernovae (SNIa) to provide the luminosity distance (LD) directly, which depends on the value of the Hubble constant H 0 = 100h km ∙ s-1 ∙ Mpc-1, and the angular diameter distance from galaxy clusters or baryon acoustic oscillations (BAOs) to give the derived LD according to the distance duality relation, we propose a model-independent method to determine h from the fact that different observations should give the same LD at a given redshift. Combining the Sloan Digital Sky Survey II (SDSS-II) SNIa from the MLCS2k2 light curve fit and galaxy cluster data, we find that at the 1σ confidence level (CL), h = 0:5867 ± 0:0303 for the sample of the elliptical β model for galaxy clusters, and h = 0:6199 ± 0:0293 for that of the spherical β model. The former is smaller than the values from other observations, whereas the latter is consistent with the Planck result at the 2σ CL and agrees very well with the value reconstructed directly from the H(z) data. With the SDSS-II SNIa and BAO measurements, a tighter constraint, h = 0:6683 ± 0:0221, is obtained. For comparison, we also consider the Union 2.1 SNIa from the SALT2 light curve fitting. The results from the Union 2.1 SNIa are slightly larger than those from the SDSS-II SNIa, and the Union 2.1 SNIa + BAOs give the tightest value. We find that the values from SNIa + BAOs are quite consistent with those from the Planck and the BAOs, as well as the local measurement from Cepheids and very-low-redshift SNIa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. L. Freedman, B. F. Madore, B. K. Gibson, L. Ferrarese, D. D. Kelson, S. Sakai, J. R. Mould, R. C. JrKennicutt, H. C. Ford, J. A. Graham, J. P. Huchra, S. M. G. Hughes, G. D. Illingworth, L. M. Macri, P. B. Stetson, Final results from the Hubble Space Telescope key project to measure the Hubble constant, Astrophys. J. 553 (1), 47 (2001)

    Article  ADS  Google Scholar 

  2. A. Riess, L. Macri, S. Casertano, H. Lampeitl, H. C. Ferguson, A. V. Filippenko, S. W. Jha, W. Li, R. Chornock, A 3% solution: Determination of the Hubble constant with the Hubble Space Telescope Wide Field Camera 3, Astrophys. J. 730 (2), 119 (2011)

    Article  ADS  Google Scholar 

  3. C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik, G. Hinshaw, et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Final maps results, Astrophys. J. Suppl. 208 (2), 20 (2013)

    Article  ADS  Google Scholar 

  4. G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results, Astrophys. J. Suppl. 208 (2), 19 (2013)

    Article  ADS  Google Scholar 

  5. C. L. Bennett, D. Larson, J. L. Weiland, G. Hinshaw, The 1% concordance Hubble constant, Astrophys. J. 794 (2), 135 (2014)

    Article  ADS  Google Scholar 

  6. E. Calabrese, M. Archidiacono, A. Melchiorri, B. Ratra, Impact of H 0 prior on the evidence for dark radiation, Phys. Rev. D 86 (4), 043520 (2012)

    Article  ADS  Google Scholar 

  7. G. Chen, B. Ratra, Median statistics the Hubble constant, Publ. Astron. Soc. Pac. 123 (907), 1127 (2011)

    Article  ADS  Google Scholar 

  8. P. A. R. Ade, et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571, A16 (2014)

    Article  Google Scholar 

  9. P. A. R. Ade, et al., Planck 2015 results. XIII. Cosmological parameters, arXiv: 1502. 01589

  10. É. Aubourg, et al., Cosmological implications of baryon acoustic oscillation measurements, Phys. Rev. D 92 (12), 123516 (2015)

    Article  ADS  Google Scholar 

  11. L. Anderson, E. Aubourg, S. Bailey, F. Beutler, V. Bhardwaj, et al., The clustering of galaxies in the SDSSIII Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 10 11 galaxy samples, Mon. Not. R. Astron. Soc. 441 (1), 24 (2014)

    Article  ADS  Google Scholar 

  12. M. Betoule, R. Kessler, J. Guy, J. Mosher, D. Hardin, et al., Improved cosmological constraints from a joint analysis of the SDSS-II SNLS supernova samples, Astron. Astrophys. 568, A22 (2014)

    Article  ADS  Google Scholar 

  13. V. Marra, L. Amendola, I. Sawicki, W. Valkenburg, Cosmic variance the measurement of the local Hubble parameter, Phys. Rev. Lett. 110 (24), 241305 (2013)

    Article  ADS  Google Scholar 

  14. S. N. Zhang Y. Z. Ma, Direct measurement of evolving dark energy density super-accelerating expansion of the universe, arXiv: 1303. 6124

  15. G. Efstathiou, H 0 revisited, Mon. Not. R. Astron. Soc. 440 (2), 1138 (2014)

    Article  ADS  Google Scholar 

  16. M. Rigault, G. Aldering, M. Kowalski, Y. Copin, P. Antilogus, et al., Confirmation of a star formation bias in Type Ia supernova distances its effect on the measurement of the Hubble constant, Astrophys. J. 802, 20 (2015)

    Article  ADS  Google Scholar 

  17. A. E. Romano, S. A. Vallejo, Directional dependence of the local estimation of H 0 the nonperturbative effects of primordial curvature perturbations, Europhys. Lett. 109 (3), 39002 (2015)

    Article  ADS  Google Scholar 

  18. A. E. Romano, S. A. Vallejo, Low red-shift effects of local structure on the Hubble parameter in presence of a cosmological constant, Eur. Phys. J. C 76 (4), 216 (2016)

    Article  ADS  Google Scholar 

  19. D. Spergel, R. Flauger, R. Hlozek, Planck data reconsidered, Phys. Rev. D 91 (2), 023518 (2015)

    Article  ADS  Google Scholar 

  20. E. M. L. Humphreys, M. J. Reid, J. M. Moran, L. J. Greenhill, A. L. Argon, Toward a new geometric distance to the active galaxy NGC 4258. III. Final results the Hubble constant, Astrophys. J. 775 (1), 13 (2013)

    Article  ADS  Google Scholar 

  21. F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders, F. Watson, The 6dF galaxy survey: Baryon acoustic oscillations the local Hubble constant, Mon. Not. R. Astron. Soc. 416 (4), 3017 (2011)

    Article  ADS  Google Scholar 

  22. E. A. Kazin, J. Koda, C. Blake, N. Padmanabhan, S. Brough, et al., The WiggleZ Dark Energy Survey: Improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature, Mon. Not. R. Astron. Soc. 441 (4), 3524 (2014)

    Article  ADS  Google Scholar 

  23. T. Delubac, J. E. Bautista, N. G. Busca, J. Rich, D. Kirkby, et al., Baryon acoustic oscillations in the Ly forest of BOSS DR11 quasars, Astron. Astrophys. 574, A59 (2015)

    Article  ADS  Google Scholar 

  24. C. H. Chuang, F. Prada, A. J. Cuesta, et al., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Single-probe measurements the strong power of f(z)nsigma_8(z) on constraining dark energy, Mon. Not. R. Astron. Soc. 433, 3559 (2013)

    Article  ADS  Google Scholar 

  25. M. D. P. Hemantha, Y. Wang, C. H. Chuang, Measurement of H(z) DA(z) from the two-dimensional power spectrum of Sloan Digital Sky Survey luminous red galaxies, Mon. Not. R. Astron. Soc. 445 (4), 3737 (2014)

    Article  ADS  Google Scholar 

  26. C. Cheng Q. G. Huang, An accurate determination of the Hubble constant from Baryon Acoustic Oscillation datasets, Sci. China: Phys. Mech. Astron. 58 (9), 599801 (2015)

    Google Scholar 

  27. V. C. Busti, C. Clarkson, M. Seikel, Evidence for a lower value for H 0 from cosmic chronometers data? Mon. Not. R. Astron. Soc. 441(1), L11 (2014)

    Article  ADS  Google Scholar 

  28. M. Bonamente, M. K. Joy, S. J. LaRoque, J. E. Carlstrom, E. D. Reese, K. S. Dawson, Determination of the cosmic distance scale from Sunyaev-Zel’dovich effect Chandra X-ray measurements of high redshift galaxy clusters, Astrophys. J. 647 (1), 25 (2006)

    Article  ADS  Google Scholar 

  29. I. Ferreras, A. Pasquali, S. Malhotra, J. Rhoads, S. Cohen, R. Windhorst, N. Pirzkal, N. Grogin, A. M. Koekemoer, T. Lisker, N. Panagia, E. Daddi, N. P. Hathi, Early-type galaxies in the PEARS survey: Probing the stellar populations at moderate redshift, Astrophys. J. 706 (1), 158 (2009)

    Article  ADS  Google Scholar 

  30. M. Longhetti, P. Saracco, P. Severgnini, R. D. Ceca, F. Mannucci, R. Bender, N. Drory, G. Feulner, U. Hopp, The Kormendy relation of massive elliptical galaxies at z’ 1:5. Evidence for size evolution? Mon. Not. R. Astron. Soc. 374 (2), 614 (2007)

    Article  ADS  Google Scholar 

  31. E. Gaztañaga, A. Cabré, L. Hui, Clustering of Luminous Red Galaxies IV: Baryon acoustic peak in the line-of-sight direction a direct measurement of H(z), Mon. Not. R. Astron. Soc. 399 (3), 1663 (2009)

    Article  ADS  Google Scholar 

  32. J. Simon, L. Verde, R. Jimenez, Constraints on the redshift dependence of the dark energy potential, Phys. Rev. D 71 (12), 123001 (2005)

    Article  ADS  Google Scholar 

  33. D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, S. A. Stanford, Cosmic Chronometers: Constraining the equation of state of dark energy (I): H(z) measurements, J. Cosmol. Astropart. Phys. 2 (02), 8 (2010)

    Article  ADS  Google Scholar 

  34. D. J. Eisenstein, I. Zehavi, D. W. Hogg, R. Scoccimarro, M. R. Blanton, et al., Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies, Astrophys. J. 633 (2), 560 (2005)

    Article  ADS  Google Scholar 

  35. J. A. S. Lima J. V. Cunha, A 3% determination of H 0 at intermediate redshifts, Astrophys. J. 781(2), L38 (2014)

    Article  ADS  Google Scholar 

  36. R. F. L. Holanda, V. C. Busti, G. P. da Silva, Robustness of H 0 determination at intermediate redshifts, Mon. Not. R. Astron. Soc. 443(1), L74 (2014)

    Article  ADS  Google Scholar 

  37. E. De Filippis, M. Sereno, M. W. Bautz, G. Longo, Measuring the three-dimensional structure of galaxy clusters. 1. Application to a sample of 25 clusters, Astrophys. J. 625 (1), 108 (2005)

    Article  ADS  Google Scholar 

  38. R. Kessler, A. Becker, D. Cinabro, J. Vanderplas, J. A. Frieman, et al., First-year Sloan Digital Sky Survey-II (SDSS-II) supernova results: Hubble diagram cosmological parameters, Astrophys. J. Suppl. 185 (1), 32 (2009)

    Article  ADS  Google Scholar 

  39. R. Amanullah, C. Lidman, D. Rubin, G. Aldering, P. Astier, et al., Spectra light curves of six type Ia supernovae at 0:511 < z < 1: 12 the Union2 compilation, Astrophys. J. 716, 712 (2010)

    Article  ADS  Google Scholar 

  40. S. Jha, A. G. Riess, R. P. Kirshner, Improved distances to type Ia supernovae with multicolor light curve shapes: MLCS2k2, Astrophys. J. 659 (1), 122 (2007)

    Article  ADS  Google Scholar 

  41. J. Guy, P. Astier, S. Baumont, D. Hardin, R. Pain, et al., SALT2: Using distant supernovae to improve the use of Type Ia supernovae as distance indicators, Astron. Astrophys. 466 (1), 11 (2007)

    Article  ADS  Google Scholar 

  42. N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Amanullah, et al., V. improving the dark energy constraints above z > 1 building an early-type-hosted supernova sample, Astrophys. J. 746 (1), 85 (2012)

    Article  ADS  Google Scholar 

  43. B. A. Bassett M. Kunz, Cosmic distance-duality as probe of exotic physics acceleration, Phys. Rev. D 69 (10), 101305 (2004)

    Article  ADS  Google Scholar 

  44. B. A. Bassett M. Kunz, Cosmic acceleration vs. axion-photon mixing, Astrophys. J. 607 (2), 661 (2004)

    Article  ADS  Google Scholar 

  45. M. Kunz B. A. Bassett, A Tale of Two Distances, arXiv: astro-ph/0406013

  46. R. Nair, S. Jhingan, D. Jain, Cosmic distance duality cosmic transparency, J. Cosmol. Astropart. Phys. 1212, 028 (2012)

    Article  ADS  Google Scholar 

  47. H. Lampeitl, R. C. Nichol, H. J. Seo, T. Giannantonio, C. Shapiro, et al., First-year Sloan Digital Sky Survey-II (SDSS-II) supernova results: consistency constraints with other intermediate-redshift datasets, Mon. Not. R. Astron. Soc. 401 (4), 2331 (2009)

    Article  ADS  Google Scholar 

  48. Z. Li, P. Wu, H. Yu, Cosmological-modelindependent tests for the distance-duality relation from Galaxy Clusters Type Ia Supernova, Astrophys. J. 729(1), L14 (2011)

    Article  ADS  Google Scholar 

  49. R. F. L. Holanda, J. A. S. Lima, M. B. Ribeiro, Testing the distance-duality relation with galaxy clusters type Ia supernovae, Astrophys. J. 722(2), L233 (2010)

    Article  ADS  Google Scholar 

  50. P. Wu, Z. Li, X. Liu, H. Yu, Cosmic distance-duality relation test using type Ia supernovae the baryon acoustic oscillation, Phys. Rev. D 92 (2), 023520 (2015)

    Article  ADS  Google Scholar 

  51. P. R. Bevington D. K. Robinson, Data reduction error analysis for the physical sciences, 3rd Ed., edited by P. R. Bevington K. D. Robinson, MA: McGraw-Hill, 2003

  52. E. D. Reese, J. E. Carlstrom, M. Joy, J. J. Mohr, L. Grego, W. L. Holzapfel, Determining the cosmic distance scale from interferometric measurements of the Sunyaev-Zel’dovich effect, Astrophys. J. 581 (1), 53 (2002)

    Article  ADS  Google Scholar 

  53. B. S. Mason, S. T. Myers, A. C. S. Readhead, A Measurement of H 0 from the Sunyaev-Zel’dovich Effect, Astrophys. J. 555, L11 (2001)

    Article  ADS  Google Scholar 

  54. B. A. Bassett R. Hlozek, Baryon acoustic oscillations, arXiv: 0910. 5224

  55. C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch, et al., The WiggleZ Dark Energy Survey: Joint measurements of the expansion growth history at z < 1, Mon. Not. R. Astron. Soc. 425 (1), 405 (2012)

    Article  ADS  Google Scholar 

  56. X. Xu, A. J. Cuesta, N. Padmanabhan, D. J. Eisenstein, C. K. McBride, Measuring DA H at z = 0: 35 from the SDSS DR7 LRGs using baryon acoustic oscillations, Mon. Not. R. Astron. Soc. 431 (3), 2834 (2013)

    Article  ADS  Google Scholar 

  57. L. Samushia, B. A. Reid, M. White, W. J. Percival, A. J. Cuesta, et al., The clustering of galaxies in the SDSSIII Baryon Oscillation Spectroscopic Survey: Measuring growth rate geometry with anisotropic clustering, Mon. Not. R. Astron. Soc. 439 (4), 3504 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pu-Xun Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, PX., Li, ZX. & Yu, HW. Determining H 0 using a model-independent method. Front. Phys. 12, 129801 (2017). https://doi.org/10.1007/s11467-016-0599-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0599-9

Keywords

Navigation