Skip to main content
Log in

Characterization of the globular oxide inclusion ratings in steel using laser-induced breakdown spectroscopy

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Grade assessment of steel is generally performed via the metallographic method, which is timeconsuming and is not able to provide the elemental distribution information. In this paper, we present a method to measure the globular oxide inclusion ratings in steel using laser-induced breakdown spectroscopy (LIBS). The measurement is performed in two basic steps: steel samples are polished using metallographic sand paper and the Al2O3 inclusion number and size distribution in a marked area are observed using scanning electron microscope/energy dispersive X-ray spectroscopy (SEM/EDS) for further LIBS scanning analysis. The threshold intensity that distinguishes soluble aluminum and insoluble aluminum inclusions is determined using LIBS combined with the SEM/EDS statistical data. Carbon steel (the sample number is S9256) and bearing steel (the sample number is GCr15) are analyzed in scanning mode, and the number of Al2O3 inclusions in different size ranges is obtained from the statistical information derived from the Al2O3 size calibration curve. According to heavy and thin series for globular oxide inclusions grade assessment, the method we propose is comparable to the traditional metallographic method in terms of accuracy; however, the process is simplified and the measurement speed is significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Noll, C. F. Begemann, M. Brunk, S. Connemann, C. Meinhardt, M. Scharun, V. Sturm, J. Makowe, and C. Gehlen, Laser-induced breakdown spectroscopy expands into industrial applications, Spectrochim. Acta B 93, 41 (2014)

    Article  ADS  Google Scholar 

  2. V. Sturm, J. Vrenegor, R. Noll, and M. Hemmerlin, Bulk analysis of steel samples with surface scale layers by enhanced laser ablation and LIBS analysis of C, P, S, Al, Cr, Cu, Mn and Mo, J. Anal. At. Spectrom. 19(4), 451 (2004)

    Article  Google Scholar 

  3. A. Sarkar, V. Karki, S. K. Aggarwal, G. SMaurya, R. Kumar, A. K. Rai, X. Mao, and R. E. Russo, Spectrochim. Acta B 108, 8 (2015)

    Article  ADS  Google Scholar 

  4. R. S. Harmon, R. E. Russo, and R. R. Hark, Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review, Spectrochim. Acta B 87, 11 (2013)

    Article  ADS  Google Scholar 

  5. R. Harmon, K. Shughrue, J. Remus, M. Wise, L. East, and R. Hark, Can the provenance of the conflict minerals columbite and tantalite be ascertained by laser-induced breakdown spectroscopy? Anal. Bioanal. Chem. 400(10), 3377 (2011)

    Article  Google Scholar 

  6. M. Z. Martin, S. Allman, D. J. Brice, R. CMartin, and N. O. Andre, Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in-situ applications, Spectrochim. Acta B 74–75, 177 (2012)

    Google Scholar 

  7. D. A. Cremers, A. Beddingfield, R. Smithwick, R. C. Chinni, C. R. Jones, B. Beardsley, and L. Karch, Monitoring uranium, hydrogen, and lithium and their isotopes using a compact laser-induced breakdown spectroscopy (LIBS) probe and highresolution spectrometer, Appl. Spectrosc. 66(3), 250 (2012)

    Article  ADS  Google Scholar 

  8. M. Galiová, J. Kaiser, K. Novotný, J. Novotný, T. Vaculovi M. Liška, R. Malina, K. Stejskal, V. Adam, and R. Kizek, Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry, Appl. Phys. A 93(4), 917 (2008)

    Article  ADS  Google Scholar 

  9. F. M. V. Pereira, D. M. B. P. Milori, A. L. Venâncio, M. S. T. Russo, P. K. Martins, and J. F. Astúa, Evaluation of the effects of Candidatus Liberibacter asiaticus on inoculated citrus plants using laser-induced breakdown spectroscopy (LIBS) and chemometrics tools, Talanta 83(2), 351 (2010)

    Article  Google Scholar 

  10. J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star, J. Anal. At. Spectrom. 19(9), 1061 (2004)

    Article  Google Scholar 

  11. Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)

    Article  Google Scholar 

  12. J. Yu and R. E. Zheng, Laser-induced plasma and laserinduced breakdown spectroscopy (LIBS) in China: The challenge and the opportunity, Front. Phys. 7(6), 647 (2012)

    Article  MathSciNet  Google Scholar 

  13. D. W. Hahn and N. Omennetto, Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of instrumental and methodological approaches to material analysis and applications to different fields, Appl. Spectrosc. 66(4), 347 (2012)

    Article  ADS  Google Scholar 

  14. G. Cristoforetti, E. Tognoni, and L. A. Gizzi, Thermodynamic equilibrium states in laser-induced plasmas: From the general case to laser-induced breakdown spectroscopy plasmas, Spectrochim. Acta B 90, 1 (2013)

    Article  Google Scholar 

  15. J. Kaiser, M. Galiová, K. Novotný, R. Cervenka, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlicka, K. Stejskal, V. Adam, and R. Kizek, Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry, Spectrochim. Acta B 64(1), 67 (2009)

    ADS  Google Scholar 

  16. V. Motto-Ros, L. Sancey, X. C. Wang, Q. L. Ma, F. Lux, X. S. Bai, G. Panczer, O. Tillement, and J. Yu, Mapping nanoparticles injected into a biological tissue using laser-induced breakdown spectroscopy, Spectrochim. Acta B 87, 168 (2013)

    Article  ADS  Google Scholar 

  17. F. Boué-Bigne, Analysis of oxide inclusions in steel by fast laser-induced breakdown spectroscopy scanning: An approach to quantification, Appl. Spectrosc. 61(3), 333 (2007)

    Article  ADS  Google Scholar 

  18. H. M. Kuss, H. Mittelstaedt, and G. Mueller, Inclusion mapping and estimation of inclusion contents in ferrous materials by fast scanning laser-induced optical emission spectrometry, J. Anal. At. Spectrom. 20(8), 730 (2005)

    Article  Google Scholar 

  19. F. Boué-Bigne, Simultaneous characterization of elemental segregation and cementite networks in high carbon steel products by spatially-resolved laser-induced breakdown spectroscopy, Spectrochim. Acta B 96, 21 (2014)

    Article  ADS  Google Scholar 

  20. M. P. Mateo, L. M. Cabalin, J. M. Baena, and J. J. Laserna, Surface interaction and chemical imaging in plasma spectrometry induced with a line-focused laser beam, Spectrochim. Acta B 57(3), 601 (2002)

    Article  ADS  Google Scholar 

  21. I. Lopez-Quintas, M. P. Mateo, V. Piñon, A. Yañez, and G. Nicolas, Mapping of mechanical specimens by laser induced breakdown spectroscopy method: Application to an engine valve, Spectrochim. Acta B 74–75, 109 (2012)

    Article  Google Scholar 

  22. I. V. Cravetchi, M. Taschuk, Y. Y. Tsui, and R. Fedosejevs, Scanning microanalysis of Al alloys by laser-induced breakdown spectroscopy, Spectrochim. Acta B 59(9), 1439 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Hai Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jia, YH., Yang, C. et al. Characterization of the globular oxide inclusion ratings in steel using laser-induced breakdown spectroscopy. Front. Phys. 11, 115205 (2016). https://doi.org/10.1007/s11467-016-0591-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0591-4

Keywords

Navigation