Skip to main content
Log in

Cyclokinetic models and simulations for high-frequency turbulence in fusion plasmas

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Gyrokinetics is widely applied in plasma physics. However, this framework is limited to weak turbulence levels and low drift-wave frequencies because high-frequency gyro-motion is reduced by the gyro-phase averaging. In order to test where gyrokinetics breaks down, Waltz and Zhao developed a new theory, called cyclokinetics [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Cyclokinetics dynamically follows the high-frequency ion gyro-motion which is nonlinearly coupled to the low-frequency drift-waves interrupting and suppressing gyro-averaging. Cyclokinetics is valid in the high-frequency (ion cyclotron frequency) regime or for high turbulence levels. The ratio of the cyclokinetic perturbed distribution function over equilibrium distribution function δf/F can approach 1.

This work presents, for the first time, a numerical simulation of nonlinear cyclokinetic theory for ions, and describes the first attempt to completely solve the ion gyro-phase motion in a nonlinear turbulence system. Simulations are performed [Zhao Deng and R. E. Waltz, Phys. Plasmas 22(5), 056101 (2015)] in a local flux-tube geometry with the parallel motion and variation suppressed by using a newly developed code named rCYCLO, which is executed in parallel by using an implicit time-advanced Eulerian (or continuum) scheme [Zhao Deng and R. E. Waltz, Comp. Phys. Comm. 195, 23 (2015)]. A novel numerical treatment of the magnetic moment velocity space derivative operator guarantee saccurate conservation of incremental entropy.

By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the gyrokinetics breakdown condition is quantitatively tested. Gyrokinetic transport and turbulence level recover those of cyclokinetics at high relative ion cyclotron frequencies and low turbulence levels, as required. Cyclokinetic transport and turbulence level are found to be lower than those of gyrokinetics at high turbulence levels and low-Ω* values with stable ion cyclotron modes. The gyrokinetic approximation is found to break down when the density perturbation exceeds 20%, or when the ratio of nonlinear E×B frequency over ion cyclotron frequency exceeds 20%. This result indicates that the density perturbation of the Tokamak L-mode near-edge is not sufficiently large for breaking the gyro-phase averaging. For cyclokinetic simulations with sufficiently unstable ion cyclotron (IC) modes and sufficiently low Ω* ∼10, the high-frequency component of the cyclokinetic transport can exceed that of the gyrokinetic transport. However, the low-frequency component of the cyclokinetic transport does not exceed that of the gyrokinetic transport. For higher and more physically relevant Ω* ⩾50 values and physically realistic IC driving rates, the low-frequency component of the cyclokinetic transport remains smaller than that of the gyrokinetic transport. In conclusion, the “L-mode near-edge short-fall” phenomenon, observed in some low-frequency gyrokinetic turbulence transport simulations, does not arise owing to the nonlinear coupling of high-frequency ion cyclotron motion to low-frequency drift motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Rosenbluth and A. N. Kaufman, Plasma diffusion in a magnetic field, Phys. Rev. 109(1), 1 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. D. Pfirsch and A. Schluter, Max Planck Institute Report MPI/PA/7/62 (unpublished), 1962

    Google Scholar 

  3. H. W. Hendel, T. K. Chu, and P. A. Politzer, Collisional drift waves — Identification, stabilization, and enhanced plasma transport, Phys. Fluids 11(11), 2426 (1968)

    Google Scholar 

  4. S. C. Prager, A. K. Sen, and T. C. Marshall, Dissipative trapped-electron instability in cylindrical geometry, Phys. Rev. Lett. 33(12), 692 (1974)

    Article  ADS  Google Scholar 

  5. J. Slough, G. A. Navratil, and A. K. Sen, Production and observation of the dissipative trapped-ion instability, Phys. Rev. Lett. 47(15), 1057 (1981)

    Article  ADS  Google Scholar 

  6. R. Scarmozzino, A. K. Sen, and G. A. Navratil, Production and identification of a collisionless, curvature-driven, trapped-particle instability, Phys. Rev. Lett. 57(14), 1729 (1986)

    Google Scholar 

  7. A. K. Sen, J. Chen, and M. Mauel, Production and identification of the ion-temperature-gradient instability, Phys. Rev. Lett. 66(4), 429 (1991)

    Article  ADS  Google Scholar 

  8. E. Mazzucato, Small-scale density fluctuations in the adiabatic toroidal compressor, Phys. Rev. Lett. 36(14), 792 (1976)

    Article  ADS  Google Scholar 

  9. C. M. Surko and R. E. Slusher, Study of the density fluctuations in the adiabatic toroidal compressor scattering tokamak using CO2 laser, Phys. Rev. Lett. 37(26), 1747 (1976)

    Article  ADS  Google Scholar 

  10. R. E. Slusher and C. M. Surko, Study of density fluctuations in the absorption of oxygen on silicon, Phys. Rev. Lett. 40(6), 400 (1978)

    Article  ADS  Google Scholar 

  11. W. Horton, Spectral distribution of drift-wave fluctuations in Tokamaks, Phys. Rev. Lett. 37(19), 1269 (1976)

    Article  ADS  Google Scholar 

  12. R. V. Bravenec, K. W. Gentle, B. Richards, D. W. Ross, D. C. Sing, A. J. Wootton, D. L. Brower, N. C. Luhmann, W. A. Peebles, C. X. Yu, T. P. Crowley, J. W. Heard, R. L. Hickok, P. M. Schoch, and X. Z. Yang, Core turbulence and transport studies on the Texas Experimental Tokamak, Phys. Fluids B Plasma Phys. 4(7), 2127 (1992)

    Article  Google Scholar 

  13. K. W. Gentle, R. V. Bravenec, G. Cima, H. Gasquet, G. A. Hallock, P. E. Phillips, D. W. Ross, W. L. Rowan, A. J. Wootton, T. P. Crowley, J. Heard, A. Ouroua, P. M. Schoch, and C. Watts, An experimental counter-example to the local transport paradigm, Plasma Phys. Contr. Fusion 2(6), 2292 (1995)

    Article  Google Scholar 

  14. G. Cima, R. V. Bravenec, A. J. Wootton, T. D. Rempel, R. F. Gandy, C.Watts, and M. Kwon, Core temperature fluctuations and related heat transport in the Texas Experimental Tokamak-Upgrade, Phys. Plasmas 2(3), 720 (1995)

    Article  ADS  Google Scholar 

  15. C. Watts, R. F. Gandy, G. Cima, R. V. Bravenec, D. W. Ross, A. J.Wootton, A. Ouroua, J. W. Heard, T. P. Crowley, P. M. Schoch, D. L. Brower, Y. Jiang, B. Deng, C. W. Domier, and N. C. Luhmann, Poloidal asymmetry and gradient drive in core electron density and temperature fluctuations on the Texas Experimental Tokamak-Upgrade, Phys. Plasmas 3(5), 2013 (1996)

    Article  ADS  Google Scholar 

  16. B. H. Deng, D. L. Brower, G. Cima, C. W. Domier, N. C. Luhmann, and C. Watts, Mode structure of turbulent electron temperature fluctuations in the Texas Experimental Tokamak Upgrade, Phys. Plasmas 5(12), 4117 (1998)

    Article  ADS  Google Scholar 

  17. A. Hasegawa and K. Mima, Stationary spectrum of strong turbulence in magnetized nonuniform plasma, Phys. Rev. Lett. 39(4), 205 (1977)

    Article  ADS  Google Scholar 

  18. A. Hasegawa and K. Mima, Pseudo-three-dimensional turbulence in magnetized nonuniform plasma, Phys. Fluids 21(1), 87 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. A. Hasegawa and M. Wakatani, Plasma edge turbulence, Phys. Rev. Lett. 50(9), 682 (1983)

    Article  ADS  MATH  Google Scholar 

  20. R. E. Waltz, R. R. Dominguez, and G. W. Hammett, Gyro- Landau fluid models for toroidal geometry, Phys. Fluids B Plasma Phys. 4(10), 3138 (1992)

    Article  Google Scholar 

  21. P. H. Rutherford and E. A. Frieman, Drift instabilities in general magnetic field configurations, Phys. Fluids 11(3), 569 (1968)

    Article  ADS  Google Scholar 

  22. J. B. Taylor and R. J. Hastie, Stability of general plasma equilibria - I formal theory, Plasma Phys. 10(5), 479 (1968)

    Article  ADS  MATH  Google Scholar 

  23. T. M. Antonsen and B. Lane, Kinetic equations for low frequency instabilities in inhomogeneous plasmas, Phys. Fluids 23(6), 1205 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. P. J. Catto, W. M. Tang, and D. E. Baldwin, Generalized gyrokinetics, Plasma Phys. 23(7), 639 (1981)

    Article  ADS  Google Scholar 

  25. E. A. Frieman and L. Chen, Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria, Phys. Fluids 25(3), 502 (1982)

    Article  ADS  MATH  Google Scholar 

  26. C. Holland, A. E. White, G. R. McKee, M. W. Shafer, J. Candy, R. E. Waltz, L. Schmitz, and G. R. Tynan, Implementation and application of two synthetic diagnostics for validating simulations of core Tokamak turbulence, Phys. Plasmas 16(5), 052301 (2009)

    Article  ADS  Google Scholar 

  27. J. Candy and R. E. Waltz, Anomalous transport scaling in the DIII-D Tokamak matched by supercomputer simulation, Phys. Rev. Lett. 91(4), 045001 (2003)

    Article  ADS  Google Scholar 

  28. R. E. Waltz, Search for the missing L-mode edge transport and possible breakdown of gyro kinetics, BAPS Series II, 57(12), 105, DI3-2 (2012)

    Google Scholar 

  29. A. E. White, L. Schmitz, G. R. McKee, C. Holland, W. A. Peebles, T. A. Carter, M. W. Shafer, M. E. Austin, K. H. Burrell, J. Candy, J. C. DeBoo, E. J. Doyle, M. A. Makowski, R. Prater, T. L. Rhodes, G. M. Staebler, G. R. Tynan, R. E. Waltz, and G. Wang, Measurements of core electron temperature and density fluctuations in DIII-D and comparison to nonlinear gyrokinetic simulations, Phys. Plasmas 15(5), 056116 (2008)

    Article  ADS  Google Scholar 

  30. T. Rhodes, C. Holland, S. Smith, A. White, K. Burrell, J. Candy, J. DeBoo, E. Doyle, J. Hillesheim, J. Kinsey, G. McKee, D. Mikkelsen, W. Peebles, C. Petty, R. Prater, S. Parker, Y. Chen, L. Schmitz, G. Staebler, R. E. Waltz, G. Wang, Z. Yan, and L. Zeng, L-mode validation studies of gyrokinetic turbulence simulations via multiscale and multifield turbulence measurements on the DIII-D Tokamak, Nucl. Fusion 51(6), 063022 (2011)

    Article  ADS  Google Scholar 

  31. R. E. Waltz and D. Zhao, Nonlinear theory of drift-cyclotron kinetics and the possible breakdown of gyro-kinetics, Phys. Plasmas 20(1), 012507 (2013)

    Article  ADS  Google Scholar 

  32. Zhao Deng and R. E. Waltz, Numerical methods for nonlinear simulations of cyclokinetics illustrating the breakdown of gyrokinetics at high turbulence levels, Comput. Phys. Commun. 195, 23 (2015)

    Article  Google Scholar 

  33. R. D. Hazeltine and J. D. Meiss, Plasma Confinement, Addison-Wesley, 1992

    Google Scholar 

  34. W. E. Drummond and M. N. Rosenbluth, Anomalous diffusion arising from microinstabilities in a plasma, Phys. Fluids 5(12), 1507 (1962)

    Article  ADS  MATH  Google Scholar 

  35. N. A. Krall and M. N. Rosenbluth, Trapping instabilities in a slightly inhomogeneous plasma, Phys. Fluids 5(11), 1435 (1962)

    Article  ADS  Google Scholar 

  36. N. A. Krall and M. N. Rosenbluth, Universal instability in complex field geometries, Phys. Fluids 8(8), 1488 (1965)

    Article  ADS  Google Scholar 

  37. T. F. R. Group, J. Adam, J. F. Bonnal, A. Breson, et al., Ion-cyclotron instability in the TFR Tokamak, Phys. Rev. Lett. 41(2), 113 (1978)

    Article  ADS  Google Scholar 

  38. R. E. Waltz and R. R. Dominguez, Ion cyclotron modes in Tokamaks, Phys. Fluids 24(8), 1575 (1981)

    Article  ADS  MATH  Google Scholar 

  39. Zhao Deng and R. E. Waltz, Testing the high turbulence level breakdown of low-frequency gyrokinetics against highfrequency cyclokinetic simulationsa), Phys. Plasmas 22(5), 056101 (2015)

    Article  ADS  Google Scholar 

  40. S. I. Braginskii, Reviews of Plasma Physics, edited by M. A. Leontovich, Consultants Bureau, New York, 1965, Vol. I, 205

  41. S. Chapman and T. G. Cowling, Mathematical Theory of Nonuniform Cases, Cambridge University Press, 1953

    MATH  Google Scholar 

  42. A. Sommerfeld, Thermodynamics and Statistical Mechanics, Academic Press, New York, 1949

    Google Scholar 

  43. L. D. Landau and E. M. Lifshits, Fluid Mechanics, Addison-Wesley, Reading, Mass, 1959

    MATH  Google Scholar 

  44. B. A. Trubnikov, Reviews of Plasma Physics, edited by M. A. Leontovich, Consultans Bureau, New York, 1965, Vol. I, 105

  45. F. L. Hinton and R. E.Waltz, Gyrokinetic turbulent heating, Phys. Plasmas 13(10), 102301 (2006)

    Article  ADS  Google Scholar 

  46. I. S. Gradshteyn and I. M. Ryzhk, Tables of Integrals, Series, and Products, Academic, 1965

    Google Scholar 

  47. J. Candy and R. E.Waltz, Velocity-space resolution, entropy production, and upwind dissipation in Eulerian gyrokinetic simulations, Phys. Plasmas 13(3), 032310 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  48. J. Candy and R. E. Waltz, An Eulerian gyrokinetic-Maxwell solver, J. Comput. Phys. 186(2), 545 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Electron temperature gradient turbulence, Phys. Rev. Lett. 85(26), 5579 (2000)

    Article  ADS  Google Scholar 

  50. M. Kotschenreuther, G. Rewoldt, and W. M. Tang, Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities, Comput. Phys. Commun. 88(2–3), 128 (1995)

    Article  ADS  MATH  Google Scholar 

  51. Z. Lin, S. Ethier, T. S. Hahm, and W. M. Tang, Size scaling of turbulent transport in magnetically confined plasmas, Phys. Rev. Lett. 88(19), 195004 (2002)

    Article  ADS  Google Scholar 

  52. R. E. Waltz, J. Candy, and C. C. Petty, Projected profile similarity in gyrokinetic simulations of Bohm and gyro-Bohm scaled DIII-D L and H modes, Phys. Plasmas 13(7), 072304 (2006)

    Article  ADS  Google Scholar 

  53. E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20(2), 130 (1963)

    Article  ADS  Google Scholar 

  54. A. E. White, N. T. Howard, M. Greenwald, M. L. Reinke, C. Sung, S. Baek, M. Barnes, J. Candy, A. Dominguez, D. Ernst, C. Gao, A. E. Hubbard, J. W. Hughes, Y. Lin, D. Mikkelsen, F. Parra, M. Porkolab, J. E. Rice, J. Walk, S. J. Wukitch, and A. C. M. Team, Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulations, Phys. Plasmas 20(5), 056106 (2013)

    Article  ADS  Google Scholar 

  55. N. T. Howard, A. E. White, M. Reinke, M. Greenwald, C. Holland, J. Candy, and J. Walk, Validation of the gyrokinetic model in ITG and TEM dominated L-mode plasmas, Nucl. Fusion 53(12), 123011 (2013)

    Article  ADS  Google Scholar 

  56. N. T. Howard, A. E. White, M. Greenwald, M. L. Reinke, J. Walk, C. Holland, J. Candy, and T. Gorler, Investigation of the transport shortfall in Alcator C-Mod L-mode plasmas, Phys. Plasmas 20(3), 032510 (2013)

    Article  ADS  Google Scholar 

  57. N. T. Howard, C. Holland, A. E. White, M. Greenwald, and J. Candy, Synergistic cross-scale coupling of turbulence in a Tokamak plasma, Phys. Plasmas 21(11), 112510 (2014)

    Article  ADS  Google Scholar 

  58. D. Told, F. Jenko, T. Gorler, F. J. Casson, and E. Fable, Characterizing turbulent transport in ASDEX Upgrade Lmode plasmas via nonlinear gyrokinetic simulations, Phys. Plasmas 20(12), 122312 (2013)

    Article  ADS  Google Scholar 

  59. J. Chowdhury, W. Wan, Y. Chen, S. E. Parker, R. J. Groebner, C. Holland, and N. T. Howard, Study of the L-mode tokamak plasma “shortfall” with local and global nonlinear gyrokinetic df particle-in-cell simulation, Phys. Plasmas 21(11), 112503 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Deng  (赵登).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Waltz, R.E. & Wang, X. Cyclokinetic models and simulations for high-frequency turbulence in fusion plasmas. Front. Phys. 11, 115203 (2016). https://doi.org/10.1007/s11467-016-0555-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0555-8

Keywords

Navigation