Skip to main content
Log in

Light dark sector searches at low-energy high-luminosity e + e colliders

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Although the standard model (SM) is extremely successful, there are various motivations for considering the physics beyond the SM. For example, the SM includes neither dark energy nor dark matter, which has been confirmed through astrophysical observations. Examination of the dark sector, which contains new, light, weakly-coupled particles at the GeV scale or lower, is well motivated by both theory and dark-matter detection experiments. In this mini-review, we focus on one particular case in which these new particles can interact with SM particles through a kinematic mixing term between U(1) gauge bosons. The magnitude of the mixing can be parameterized by a parameter є. Following a brief overview of the relevant motivations and the constraints determined from numerous experiments, we focus on the light dark sector phenomenology at low-energy high-luminosity e + e colliders. These colliders are ideal for probing the new light particles, because of their large production rates and capacity for precise resonance reconstruction. Depending on the details of a given model, the typical observed signatures may also contain multi lepton pairs, displaced vertices, and/or missing energy. Through the use of extremely large data samples from existing experiments, such as KLOE, CLEO, BABAR, Belle, and BESIII, the magnitude of the mixing can be parameterized by a parameter є < 10−4–10−3 constraint can be obtained. Obviously, future experiments with larger datasets will provide opportunities for the discovery of new particles in the dark sector, or for stricter upper limits on є. Once the light dark sector is confirmed, the particle physics landscape will be changed significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Zhu, Recent progress in physics beyond the standard model, Front. Phys. 8, 241 (2013)

    Article  Google Scholar 

  2. Y. Hu, Y. K. Wang, P. F. Yin, and S. H. Zhu, On physics beyond standard model, Front. Phys. 8, 516 (2013)

    Article  Google Scholar 

  3. S. H. Zhu, A new paradigm: Role of electron-positron and hadron colliders, arXiv: 1410.2042 [hep-ph]

  4. J. L. Hewett, H. Weerts, R. Brock, J. N. Butler, B. C. K. Casey, et al., Fundamental physics at the intensity frontier, arXiv: 1205.2671 [hep-ex]

  5. R. Essig, J. A. Jaros, W. Wester, P. H. Adrian, S. Andreas, et al., Dark sectors and new, light, weakly-coupled particles, arXiv: 1311.0029 [hep-ph]

  6. N. Borodatchenkova, D. Choudhury, and M. Drees, Probing MeV dark matter at low-energy e + e - colliders, Phys. Rev. Lett. 96, 141802 (2006), arXiv: hep-ph/0510147

    Article  ADS  Google Scholar 

  7. P. Fayet, U-boson production in e + e - annihilations, psi and upsilon decays, and light dark matter, Phys. Rev. D 75, 115017 (2007), arXiv: hep-ph/0702176 [hep-ph]

    Article  ADS  Google Scholar 

  8. B. Batell, M. Pospelov, and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79, 115008 (2009), arXiv: 0903.0363 [hep-ph]

    Article  ADS  Google Scholar 

  9. R. Essig, P. Schuster, and N. Toro, Probing dark forces and light hidden sectors at low-energy e + e - colliders, Phys. Rev. D 80, 015003 (2009), arXiv: 0903.3941 [hep-ph]

    Article  ADS  Google Scholar 

  10. M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, J. High Energy Phys. 0907, 051 (2009), arXiv: 0904.1743 [hep-ph]

    Article  ADS  Google Scholar 

  11. P.-F. Yin, J. Liu, and S.-H. Zhu, Detecting light leptophilic gauge boson at BESIII detector, Phys. Lett. B 679, 362 (2009), arXiv: 0904.4644 [hep-ph]

    Article  ADS  Google Scholar 

  12. L. Barze, G. Balossini, C. Bignamini, C. M. Carloni Calame, G. Montagna, O. Nicrosini, and F. Piccinini, Probing dark forces at GeV-scale colliders, Acta Phys. Polon. B 42, 2461 (2011)

    Article  Google Scholar 

  13. B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166, 196 (1986)

    Article  ADS  Google Scholar 

  14. N. Arkani-Hamed and N. Weiner, LHC signals for a superunified theory of dark matter, J. High Energy Phys. 0812, 104 (2008), arXiv: 0810.0714 [hep-ph]

    Article  ADS  Google Scholar 

  15. M. Baumgart, C. Cheung, J. T. Ruderman, L.-T. Wang, and I. Yavin, Non-Abelian dark sectors and their collider signatures, J. High Energy Phys. 0904, 014 (2009), arXiv: 0901.0283 [hep-ph]

    Article  ADS  Google Scholar 

  16. S. A. Abel, M. D. Goodsell, J. Jaeckel, V. V. Khoze, and A. Ringwald, Kinetic mixing of the photon with hidden U(1)s in string phenomenology, J. High Energy Phys. 0807, 124 (2008), arXiv: 0803.1449 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Goodsell, J. Jaeckel, J. Redondo, and A. Ringwald, Naturally light hidden photons in LARGE volume string compactifications, J. High Energy Phys. 0911, 027 (2009), arXiv: 0909.0515 [hep-ph]

    Article  ADS  Google Scholar 

  18. C. Cheung, J. T. Ruderman, L.-T. Wang, and I. Yavin, Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80, 035008 (2009), arXiv: 0902.3246 [hep-ph]

    Article  ADS  Google Scholar 

  19. M. A. Deliyergiyev, Recent progress in search for hidden/dark photon, arXiv: 1510.06927 [hep-ph].

  20. O. Adriani, et al. (PAMELA Collaboration), An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV, Nature 458, 607 (2009), arXiv: 0810.4995 [astro-ph]

    Article  ADS  Google Scholar 

  21. J. Chang, J. H. Adams, H. S. Ahn, G. L. Bashindzhagyan, M. Christl, et al., An excess of cosmic ray electrons at energies of 300–800 GeV, Nature 456, 362 (2008)

    Article  ADS  Google Scholar 

  22. A. A. Abdo, et al. (Fermi LAT Collaboration), Measurement of the cosmic ray e + plus e spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102, 181101 (2009), arXiv: 0905.0025 [astro-ph.HE]

    Article  ADS  Google Scholar 

  23. M. Aguilar, et al. (AMS Collaboration), First result from the alpha magnetic spectrometer on the international space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5C350 GeV, Phys. Rev. Lett. 110(14), 141102 (2013)

    Article  ADS  Google Scholar 

  24. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, et al., A new measurement of the antiprotonto-proton flux ratio up to 100 GeV in the cosmic radiation, Phys. Rev. Lett. 102, 051101 (2009), arXiv: 0810.4994 [astro-ph]

    Article  ADS  Google Scholar 

  25. AMS Collaboration, Talks at the “AMS Days at CERN”, April 15–17, 2015

  26. N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, A theory of dark matter, Phys. Rev. D 79, 015014 (2009), arXiv: 0810.0713 [hep-ph]

    Article  ADS  Google Scholar 

  27. M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B 671, 391 (2009), arXiv: 0810.1502 [hep-ph]

    Article  ADS  Google Scholar 

  28. R. Bernabei, et al. (DAMA Collaboration), First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C 56, 333 (2008), arXiv: 0804.2741 [astro-ph]

    Article  ADS  Google Scholar 

  29. C. E. Aalseth, et al. (CoGeNT Collaboration), Results from a search for light-mass dark matter with a P-type point contact germanium detector, Phys. Rev. Lett. 106, 131301 (2011), arXiv: 1002.4703 [astro-ph.CO]

    Article  ADS  Google Scholar 

  30. G. Angloher, M. Bauer, I. Bavykina, A. Bento, C. Bucci, et al., Results from 730 kg days of the CRESST-II dark matter search, Eur. Phys. J. C 72, 1971 (2012), arXiv: 1109.0702 [astro-ph.CO]

    Article  ADS  Google Scholar 

  31. P. Draper, T. Liu, C. E. M. Wagner, L. T. Wang, and H. Zhang, Dark light Higgs, Phys. Rev. Lett. 106, 121805 (2011), arXiv: 1009.3963 [hep-ph]

    Article  ADS  Google Scholar 

  32. S. Chang, G. D. Kribs, D. Tucker-Smith, and N. Weiner, Inelastic dark matter in light of DAMA/LIBRA, Phys. Rev. D 79, 043513 (2009), arXiv: 0807.2250 [hep-ph]

    Article  ADS  Google Scholar 

  33. A. W. Strong, R. Diehl, H. Halloin, V. Schoenfelder, L. Bouchet, P. Mandrou, F. Lebrun, and R. Terrier, Gammaray continuum emission from the inner galactic region as observed with INTEGRAL/SPI, Astron. Astrophys. 444, 495 (2005), arXiv: astro-ph/0509290

    Article  ADS  Google Scholar 

  34. C. Boehm, D. Hooper, J. Silk, M. Casse, and J. Paul, MeV dark matter: Has it been detected? Phys. Rev. Lett. 92, 101301 (2004), arXiv: astro-ph/0309686

    Article  ADS  Google Scholar 

  35. D. P. Finkbeiner and N. Weiner, Exciting dark matter and the INTEGRAL/SPI 511 keV signal, Phys. Rev. D 76, 083519 (2007), arXiv: astro-ph/0702587

    Article  ADS  Google Scholar 

  36. L. Goodenough and D. Hooper, Possible evidence for dark matter annihilation in the inner Milky way from the Fermi gamma ray space telescope, arXiv: 0910.2998 [hep-ph]

  37. T. Daylan, D. P. Finkbeiner, D. Hooper, T. Linden, S. K. N. Portillo, N. L. Rodd, and T. R. Slatyer, The characterization of the gamma-ray signal from the central Milky way: A compelling case for annihilating dark matter, arXiv: 1402.6703 [astro-ph.HE]

  38. D. Hooper, N. Weiner, and W. Xue, Dark forces and light dark matter, Phys. Rev. D 86, 056009 (2012), arXiv: 1206.2929 [hep-ph]

    Article  ADS  Google Scholar 

  39. J. Liu, N.Weiner, and W. Xue, Signals of a light dark force in the galactic center, J. High Energy Phys. 1508, 050 (2015), arXiv: 1412.1485 [hep-ph]

    Article  ADS  Google Scholar 

  40. D. Hooper, P. Blasi, and P. D. Serpico, Pulsars as the sources of high energy cosmic ray positrons, J. Cosmol. Astropart. Phys. 0901, 025 (2009), arXiv: 0810.1527 [astro-ph]

    Article  ADS  Google Scholar 

  41. M. Endo, K. Hamaguchi, and G. Mishima, Constraints on hidden photon models from electron g-2 and hydrogen spectroscopy, Phys. Rev. D 86, 095029 (2012), arXiv: 1209.2558 [hep-ph]

    Article  ADS  Google Scholar 

  42. J. P. Lees, et al. (BaBar Collaboration), Search for a dark photon in e + e - collisions at BaBar, Phys. Rev. Lett. 113(20), 201801 (2014), arXiv: 1406.2980 [hep-ex]

    Article  ADS  Google Scholar 

  43. B. Aubert, et al. (BaBar Collaboration), Search for Dimuon decays of a light scalar boson in radiative transitions upsilon — gamma A0, Phys. Rev. Lett. 103, 081803 (2009), arXiv: 0905.4539 [hep-ex]

    Article  ADS  Google Scholar 

  44. D. Babusci, et al. (KLOE-2 Collaboration), Limit on the production of a light vector gauge boson in phi meson decays with the KLOE detector, Phys. Lett. B 720, 111 (2013), arXiv: 1210.3927 [hep-ex]

    Article  ADS  Google Scholar 

  45. D. Babusci, et al. (KLOE-2 Collaboration), Search for light vector boson production in e + e -µ + µ γ interactions with the KLOE experiment, Phys. Lett. B 736, 459 (2014), arXiv: 1404.7772 [hep-ex]

    Article  ADS  Google Scholar 

  46. P. Adlarson, et al. (WASA-at-COSY Collaboration), Search for a dark photon in the π0e + e -γ decay, Phys. Lett. B 726, 187 (2013), arXiv: 1304.0671 [hep-ex]

    Article  ADS  Google Scholar 

  47. G. Agakishiev, et al. (HADES Collaboration), Searching a dark photon with HADES, Phys. Lett. B 731, 265 (2014), arXiv: 1311.0216 [hep-ex]

    Article  ADS  Google Scholar 

  48. H. Merkel, et al., Search at the Mainz Microtron for light massive gauge bosons relevant for the muon g-2 anomaly, Phys. Rev. Lett. 112(22), 221802 (2014), arXiv: 1404.5502 [hep-ex]

    Article  ADS  Google Scholar 

  49. S. Abrahamyan, et al. (APEX Collaboration), Search for a new gauge boson in electron-nucleus fixed-target scattering by the APEX experiment, Phys. Rev. Lett. 107, 191804 (2011), arXiv: 1108.2750 [hep-ex]

    Article  ADS  Google Scholar 

  50. A. Adare, et al. (PHENIX Collaboration), Search for dark photons from neutral meson decays in p + p and d+Au collisions at \(\sqrt {^SNN} \)=200 GeV, Phys. Rev. C 91(3), 031901 (2015), arXiv: 1409.0851 [nucl-ex]

    Article  ADS  Google Scholar 

  51. E. Goudzovski (NA48/2 Collaboration), Search for the dark photon in π0 decays by the NA48/2 experiment at CERN, EPJ Web Conf. 96, 01017 (2015), arXiv: 1412.8053 [hep-ex]

    Article  Google Scholar 

  52. E. M. Riordan, et al., A search for short lived axions in an electron beam dump experiment, Phys. Rev. Lett. 59, 755 (1987)

    Article  ADS  Google Scholar 

  53. A. Bross, M. Crisler, S. H. Pordes, J. Volk, S. Errede, and J. Wrbanek, A search for shortlived particles produced in an electron beam dump, Phys. Rev. Lett. 67, 2942 (1991)

    Article  ADS  Google Scholar 

  54. S. Andreas, C. Niebuhr, and A. Ringwald, New limits on hidden photons from past electron beam dumps, Phys. Rev. D 86, 095019 (2012), arXiv: 1209.6083 [hep-ph]

    Article  ADS  Google Scholar 

  55. G. Eigen (BaBar Collaboration), Direct searches for new physics particles at BABAR, J. Phys. Conf. Ser. 631(1), 012034 (2015), arXiv: 1503.02860 [hep-ex]

    Article  ADS  Google Scholar 

  56. A. Soffer, Constraints on dark forces from the B factories and low-energy experiments, arXiv: 1409.5263 [hep-ex]

  57. A. Soffer, Searches for light scalars, pseudoscalars, and gauge bosons, arXiv: 1507.02330 [hep-ex]

  58. M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80, 095002 (2009), arXiv: 0811.1030 [hep-ph]

    Article  ADS  Google Scholar 

  59. J. D. Bjorken, R. Essig, P. Schuster, and N. Toro, New fixedtarget experiments to search for dark gauge forces, Phys. Rev. D 80, 075018 (2009), arXiv: 0906.0580 [hep-ph]

    Article  ADS  Google Scholar 

  60. R. Essig, P. Schuster, N. Toro, and B. Wojtsekhowski, An electron fixed target experiment to search for a new vector boson A decaying to e + e -, J. High Energy Phys. 1102, 009 (2011), arXiv: 1001.2557 [hep-ph]

    ADS  Google Scholar 

  61. J. Balewski, J. Bernauer, W. Bertozzi, J. Bessuille, B. Buck, et al., DarkLight: A search for dark forces at the Jefferson laboratory free-electron laser facility, arXiv: 1307.4432

  62. J. Blumlein and J. Brunner, New exclusion limits for dark gauge forces from beam-dump data, Phys. Lett. B 701, 155 (2011), arXiv: 1104.2747 [hep-ex]

    Article  ADS  Google Scholar 

  63. J. Blmlein and J. Brunner, New exclusion limits on dark gauge forces from proton Bremsstrahlung in beam-dump data, Phys. Lett. B 731, 320 (2014), arXiv: 1311.3870 [hepph]

    Article  ADS  Google Scholar 

  64. B. Batell, M. Pospelov, and A. Ritz, Exploring portals to a hidden sector through fixed targets, Phys. Rev. D 80, 095024 (2009), arXiv: 0906.5614 [hep-ph]

    Article  ADS  Google Scholar 

  65. R. Essig, R. Harnik, J. Kaplan, and N. Toro, Discovering new light states at neutrino experiments, Phys. Rev. D 82, 113008 (2010), arXiv: 1008.0636 [hep-ph]

    Article  ADS  Google Scholar 

  66. D. Curtin, R. Essig, S. Gori, and J. Shelton, Illuminating dark photons with high-energy colliders, J. High Energy Phys. 1502, 157 (2015), arXiv: 1412.0018 [hep-ph]

    Article  ADS  Google Scholar 

  67. C. Cheung, J. T. Ruderman, L. T. Wang, and I. Yavin, Lepton jets in (supersymmetric) electroweak processes, J. High Energy Phys. 1004, 116 (2010), arXiv: 0909.0290 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  68. Y. Bai and Z. Han, Measuring the dark force at the LHC, Phys. Rev. Lett. 103, 051801 (2009), arXiv: 0902.0006 [hepph]

    Article  ADS  Google Scholar 

  69. A. Gupta, R. Primulando and P. Saraswat, A new probe of dark sector dynamics at the LHC, J. High Energy Phys. 1509, 079 (2015), arXiv: 1504.01385 [hep-ph]

    Article  Google Scholar 

  70. S. Chatrchyan, et al. (CMS Collaboration), Search for light resonances decaying into pairs of muons as a signal of new physics, J. High Energy Phys. 1107, 098 (2011), arXiv: 1106.2375 [hep-ex]

    Article  ADS  Google Scholar 

  71. G. Aad, et al. (ATLAS Collaboration), Search for long-lived neutral particles decaying into lepton jets in proton-proton collisions at \(\sqrt s \) = 8 TeV with the ATLAS detector, J. High Energy Phys. 1411, 088 (2014), arXiv: 1409.0746 [hep-ex]

    Article  ADS  Google Scholar 

  72. G. Aad, et al. (ATLAS Collaboration), Search for new light gauge bosons in Higgs boson decays to four-lepton nal states in pp collisions at \(\sqrt s \) = 8 TeV with the ATLAS detector at the LHC, arXiv: 1505.07645 [hep-ex]

  73. V. M. Abazov, et al. (D0 Collaboration), Search for dark photons from supersymmetric hidden valleys, Phys. Rev. Lett. 103, 081802 (2009), arXiv: 0905.1478 [hep-ex]

    Article  ADS  Google Scholar 

  74. S. Biswas, E. Gabrielli, M. Heikinheimo, and B. Mele, Higgsboson production in association with a dark photon in e + e - collisions, J. High Energy Phys. 1506 (2015) 102, arXiv: 1503.05836 [hep-ph]

    Article  ADS  Google Scholar 

  75. M. J. Strassler and K. M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651, 374 (2007), arXiv: hep-ph/0604261

    Article  ADS  Google Scholar 

  76. M. J. Strassler, Possible effects of a hidden valley on supersymmetric phenomenology, arXiv: hep-ph/0607160

  77. T. Han, Z. Si, K.M. Zurek, and M. J. Strassler, Phenomenology of hidden valleys at hadron colliders, J. High Energy Phys. 0807, 008 (2008), arXiv: 0712.2041 [hep-ph]

    Article  ADS  Google Scholar 

  78. P. Fayet, U-boson detectability, and light dark matter, arXiv: hep-ph/0607094

  79. S.-H. Zhu, U-boson at BESIII, Phys. Rev. D 75, 115004 (2007), arXiv: hep-ph/0701001

    Article  ADS  Google Scholar 

  80. R. Essig, J. Mardon, M. Papucci, T. Volansky, and Y. M. Zhong, Constraining light dark matter with low-energy e + e - colliders, J. High Energy Phys. 1311, 167 (2013), arXiv: 1309.5084 [hep-ph]

    Article  ADS  Google Scholar 

  81. F. Archilli, et al. (KLOE-2 Collaboration), Search for a vector gauge boson in phi meson decays with the KLOE detector, Phys. Lett. B 706, 251 (2012), arXiv: 1110.0411 [hep-ex]

    Article  ADS  Google Scholar 

  82. A. Anastasi, D. Babusci, G. Bencivenni, M. Berlowski, C. Bloise, et al., Limit on the production of a low-mass vector boson in e + e -→Uγ, U →e + e - with the KLOE experiment, Phys. Lett. B 750, 633 (2015), arXiv: 1509.00740 [hep-ex]

    Article  ADS  Google Scholar 

  83. J. P. Lees, et al. (BaBar Collaboration), Search for di-muon decays of a low-mass Higgs boson in radiative decays of the (1S), Phys. Rev. D 87(3), 031102 (2013) [Phys. Rev. D 87(5), 059903 (2013)], arXiv: 1210.0287 [hep-ex]

    Article  ADS  Google Scholar 

  84. B. Aubert, et al. (BaBar Collaboration), Search for a lowmass Higgs boson in Y(3S) → gamma A0, A0 → tau+ tau at BABAR, Phys. Rev. Lett. 103, 181801 (2009), arXiv: 0906.2219 [hep-ex]

    Article  ADS  Google Scholar 

  85. J. P. Lees, et al. (BaBar Collaboration), Search for a lowmass scalar Higgs boson decaying to a tau pair in singlephoton decays of γ(1S), Phys. Rev. D 88(7), 071102 (2013), arXiv: 1210.5669 [hep-ex]

    Article  ADS  Google Scholar 

  86. B. Aubert, et al. (BaBar Collaboration), Search for invisible decays of a light scalar in radiative transitions v 3S →γ A0, arXiv: 0808.0017 [hep-ex]

  87. P. del Amo Sanchez, et al. (BaBar Collaboration), Search for production of invisible final states in single-photon decays of γ(1S), Phys. Rev. Lett. 107, 021804 (2011), arXiv: 1007.4646 [hep-ex]

    Article  ADS  Google Scholar 

  88. W. Love, et al. (CLEO Collaboration), Search for very light CP-odd Higgs boson in radiative decays of Upsilon(S-1), Phys. Rev. Lett. 101 (2008) 151802, arXiv: 0807.1427 [hepex]

    Article  ADS  Google Scholar 

  89. B. Aubert, et al. (BaBar Collaboration), Search for a narrow resonance in e + e - to four lepton final states, arXiv: 0908.2821 [hep-ex]

  90. J. P. Lees, et al. (BaBar Collaboration), Search for lowmass dark-sector Higgs bosons, Phys. Rev. Lett. 108, 211801 (2012), arXiv: 1202.1313 [hep-ex]

    Article  ADS  Google Scholar 

  91. I. Jaegle (Belle Collaboration), Search for the dark photon and the dark Higgs boson at Belle, Phys. Rev. Lett. 114(21), 211801 (2015), arXiv: 1502.00084 [hep-ex]

    Article  ADS  Google Scholar 

  92. M. Ablikim, et al. (BESIII Collaboration), Search for a light Higgs-like boson A0 in J/ψ radiative decays, Phys. Rev. D 85, 092012 (2012), arXiv: 1111.2112 [hep-ex]

    Article  ADS  Google Scholar 

  93. M. Ablikim, et al. (BESIII Collaboration), Search for η and η′ invisible decays in J/ψϕη and ϕη′, Phys. Rev. D 87(1), 012009 (2013), arXiv: 1209.2469 [hep-ex]

    Article  ADS  Google Scholar 

  94. H.-B. Li and T. Luo, Probing dark force at BES-III/BEPCII, Phys. Lett. B 686, 249 (2010), arXiv: 0911.2067 [hep-ph]

    Article  ADS  Google Scholar 

  95. V. Prasad, H. Li, and X. Lou, Search for low-mass Higgs and dark photons at BESIII, arXiv: 1508.07659 [hep-ex]

  96. P. F. Yin and S. H. Zhu, Detecting light long-lived particle produced by cosmic ray, Phys. Lett. B 685, 128 (2010), arXiv: 0911.3338 [hep-ph]

    Article  ADS  Google Scholar 

  97. S. H. Zhu, V-particle again? Int. J. Mod. Phys. D 20, 1399 (2011)

    Article  ADS  Google Scholar 

  98. B. Batell, M. Pospelov, A. Ritz and Y. Shang, Solar gamma rays powered by secluded dark matter, Phys. Rev. D 81, 075004 (2010), arXiv: 0910.1567 [hep-ph]

    Article  ADS  Google Scholar 

  99. P. Schuster, N. Toro, N. Weiner and I. Yavin, High energy electron signals from dark matter annihilation in the Sun, Phys. Rev. D 82, 115012 (2010), arXiv: 0910.1839 [hep-ph]

    Article  ADS  Google Scholar 

  100. P. Meade, S. Nussinov, M. Papucci and T. Volansky, Searches for long lived neutral particles, J. High Energy Phys. 1006, 029 (2010), arXiv: 0910.4160 [hep-ph]

    Article  ADS  Google Scholar 

  101. S. H. Zhu, Dark matter signature from the sky and at colliders, PoS ICHEP 2010, 451 (2010), arXiv: 1008.3963 [hepph]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Fei Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, PF., Zhu, SH. Light dark sector searches at low-energy high-luminosity e + e colliders. Front. Phys. 11, 111403 (2016). https://doi.org/10.1007/s11467-016-0541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0541-1

Keywords

Navigation