Skip to main content
Log in

First-principles study of structural, elastic, and electronic properties of CeB6 under pressure

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We performed a first-principles study of the electronic, elastic, and thermal properties of the rareearth hexaboride CeB6 using the local density approximation (LDA) in consideration of the effective onsite Coulomb parameter U eff . To systemically evaluate the effect of U eff on the structure of the material, the dependences of the lattice parameter a 0 and bulk modulus B on U eff were examined in the framework of the LDA+U and GGA(PBE)+U scheme. We obtained a lattice constant a 0, elastic constants C ij , and a bulk modulus B at 0 K and 0 GPa that were in good agreement with the experimental results and other theoretical findings. We focused on the electronic structure by analyzing the variation of the density of states with different U eff values and pressures, which indicates the metallic characteristic of CeB6. Interestingly, the effect of high pressure was similar to that of increasing U eff , as the peaks at the bottom of the conduction band moved to the high-energy region in both cases. The elastic constants C ij , bulk modulus B, shear modulus G, Young’s modulus E, shear-sound velocity V S , and longitudinal-sound velocity V L were calculated from 0 to 120 GPa. Additionally, the Debye temperature Θ D and elastic Debye temperature Θ E were systematically calculated using the thermodynamic methods in the range of 0–100 GPa. This research may provide a comprehensive understanding of the Kondo compound CeB6 and similar rare-earth hexaborides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Loschen, J. Carrasco, K. M. Neyman, and F. Illas, First-principles LDA+ U and GGA+ U study of cerium oxides: Dependence on the effective U parameter, Phys. Rev. B 75(3), 035115 (2007)

    Article  ADS  Google Scholar 

  2. Y. Y. Qi, Z. W. Niu, C. Cheng, and Y. Cheng, Structural and elastic properties of Ce2O3 under pressure from LDA+U method, Front. Phys. 8(4), 405 (2013)

    Article  Google Scholar 

  3. W. Li, C. Setty, X. H. Chen, and J. P. Hu, Electronic and magnetic structures of chain structured iron selenide compounds, Front. Phys. 9(4), 471 (2014)

    Google Scholar 

  4. O. Zaharko and P. Fischer, Zero-field magnetic structure in CeB6 reinvestigated by neutron diffraction and muon spin relaxation, Phys. Rev. B 68(21), 214401 (2003)

    Article  ADS  Google Scholar 

  5. D. Hall and Z. Fisk, Magnetic-field dependence of the hightemperature magnetically ordered phase transition in CeB6, Phys. Rev. B 62(1), 84 (2000)

    Article  ADS  Google Scholar 

  6. R. G. Goodrich, D. P. Young, D. Hall, L. Balicas, Z. Fisk, and N. Harrison, Extension of temperature-magnetic field phase diagram of CeB6, Phys. Rev. B 69(5), 054415 (2004)

    Article  ADS  Google Scholar 

  7. N. Foroozani, J. Lim, G. Fabbris, P. F. S. Rosa, Z. Fisk, and J. S. Schilling, Suppression of dense Kondo state in CeB6 under pressure, Physica B 457, 12 (2015)

    Article  ADS  Google Scholar 

  8. B. Lüthi, S. Blumenroder, B. Hillebrands, E. Zirngiebl, G. Güntherodt, and K. Winzer, Elastic and magnetoelastic effects in CeB6, Z. Phys. B: Condens. Matter 58(1), 31 (1984)

    Article  ADS  Google Scholar 

  9. S. Nakamura, T. Goto, S. Kunii, K. Iwashita, and A. Tamaki, Quadrupole-strain interaction in rare earth hexaborides, J. hys. Soc. Jpn. 63(2), 623 (1994)

    Article  ADS  Google Scholar 

  10. T. Goto, A. Tamaki, S. Kunii, T. Nakajima, T. Fujimura, T. Kasuya, T. Komatsubarra, and S. B. Woods, Elastic properties in CeB6, J. Magn. Magn. Mater. 31, 419 (1983)

    Article  ADS  Google Scholar 

  11. C.J. Pickard, B. Winkler, R. K. Chen, M.C. Payne, and D. Vanderbilt, Structural properties of Lanthanide and Actinide compounds within the Plane Wave Pseudopotential Approach, Phys. Rev. Lett. 85(24), 5122 (2000)

    Article  ADS  Google Scholar 

  12. W. Sikora, F. Bialas, L. Pytlik, and J. Malinowski, Symmetry analysis of antiferroquadrupolar order and accompanying atomic displacements in CeB6, Solid State Sci. 7(6), 645 (2005)

    Article  ADS  Google Scholar 

  13. Sandeep, M. P. Ghimire, D. P. Rai, P. K. Patra, and R. K. Thapa, Study of Bulk modulus, Volume, Energy, latticeparameters and magnetic moments in rare earth hexaborides using density functional theory, J. Phys.: Conf. Ser. 377(1), 012084 (2012)

    ADS  Google Scholar 

  14. T. G. Liu, W. Q. Zhang, and Y. L. Li, First-principles study on the structure, electronic and magnetic properties of HoSin (n= 1–12, 20) clusters, Front. Phys. 9(2), 218 (2014)

    Google Scholar 

  15. T. Gürel and R. Eryiǧit, An initio lattice dynamics and thermodynamics of rare-earth hexaborides LaB6 and CeB6, Phys. Rev. B 82(10), 104302 (2010)

    Article  Google Scholar 

  16. M. Neupane, N. Alidoust, G. Bian, S.Y. Xu, and P. P. Shibayev et al., Fermi surface topology and hotspots distribution in Kondo lattice system CeB6, arXiv: 1411.0302 (2014)

  17. S. Fabris, S. de Gironcoli, S. Baroni, G. Vicario, and G. Balducci, Taming multiple valency with density functionals: A case study of defective ceria, Phys. Rev. B 71(4), 041102 (2005)

    Article  ADS  Google Scholar 

  18. G. Kresse, P. Blaha, J. L. F. Da Silva, and M. V. Ganduglia Pirovano, Comment on “Taming multiple valency with density functionals: A case study of defective ceria”, Phys. Rev. B 72(23), 237101 (2005)

    Article  ADS  Google Scholar 

  19. S. V. Demishev, A. V. Semeno, A. V. Bogach, N. A. Samarin, T. V. Ishchenko, V. B. Filipov, N. Y. Shitsevalova, and N. E. Sluchanko, Magnetic spin resonance in CeB6, Phys. Rev. B 80(24), 245106 (2009)

    Article  ADS  Google Scholar 

  20. P. Schlottmann, Electron spin resonance in antiferroquadrupolar-ordered CeB6, Phys. Rev. B 86(7), 075135 (2012)

    Article  ADS  Google Scholar 

  21. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64(4), 1045 (1992)

    Article  ADS  Google Scholar 

  22. V. Milman, B. Winkler, J. A. White, C. J. Packard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A peeudopotential plane-wave study, Int. J. Quant. Chem. 77(5), 895 (2000)

    Article  Google Scholar 

  23. S. H. Vosko, L. Wilk, and M. Nusair, Accurate spindependent electron liquid correlation energies for local spin density calculations: A critical analysis, Can. J. Phys. 58(8), 1200 (1980)

    Article  ADS  Google Scholar 

  24. V. I. Anisimov, I. V. Solovyev, and M. A. Korotin, Densityfunctional theory and NiO photoemission spectra, Phys. Rev. B 48(23), 16929 (1993)

    Article  ADS  Google Scholar 

  25. M. Cococcioni and S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method, Phys. Rev. B 71(3), 035105 (2005)

    Article  ADS  Google Scholar 

  26. H. J. Monkhorst and J. D. Pack, Special points for Brillouinzone integrations, Phys. Rev. B 13(12), 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  27. G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)

    Article  Google Scholar 

  28. S. Sato, A spherical charge distribution in a crystal of CeB6, J. Magn. Magn. Mater. 52(1–4), 310 (1985)

    Article  ADS  Google Scholar 

  29. F. Birch, Finite elastic strain of cubic crystals, Phys. Rev. 71(11), 809 (1947)

    Article  ADS  MATH  Google Scholar 

  30. J. M. Leger, J. Rossat-Mignod, S. Kunii, and T. Kasuya, High pressure compression of CeB6 up to 20 GPa, Solid State Commun. 54(11), 995 (1985)

    Article  ADS  Google Scholar 

  31. X. Gonze, et al., ABINIT: First-principles approach to material and nanosystem properties, Comput. Phys. Commun. 180(12), 2582 (2009)

    Article  ADS  Google Scholar 

  32. Y. K. Wei, J. X. Yu, Z. G. Li, Y. Cheng, and G. F. Ji, Elastic and thermodynamic properties of CaB6 under pressure from first principles, Physica B 406(23), 4476 (2011)

    Article  ADS  Google Scholar 

  33. D. M. Teter, Computational alchemy: The search for new superhard materials, Mrs. Bulletin 23(01), 22 (1998)

    Article  Google Scholar 

  34. F. Chu, Y. He, D. J. Thoma, and T. E. Mitchell, Elastic constants of the C15 laves phase compound NbCr2, Scr. Metal. Mater. 33(8), 1295 (1995)

    Article  Google Scholar 

  35. K. B. Panda and K. S. Ravi Chandran, Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory, Comp. Mater. Sci. 35(2), 134 (2006)

    Article  Google Scholar 

  36. M. A. Blanco, E. Francisco, and V. Luaňa, Comput. Phys. Commun. 158(1), 57 (2004)

    Article  ADS  MATH  Google Scholar 

  37. W. A. Harrison, Elastic Structure and Properties of Solids, Freeman and Company, San-Francisco, 1980

    Google Scholar 

  38. O. L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids 24(7), 909 (1963)

    Article  ADS  Google Scholar 

  39. R. Hill, The elastic behavior of a crystalline aggregate, Proc. Soc. London. A 65(5), 349 (1952)

    Article  ADS  Google Scholar 

  40. N. Singh, S. M. Saini, T. Nautiyal, and S. Auluck, Electronic structure and optical properties of rare earth hexabordes RB6 (R = La, Ce, Pr, Nd, Sm, Eu, Gd), J. Phys.: Condens. Matter 19(34), 346226 (2007)

    ADS  Google Scholar 

  41. J. Rossat-Mignod, P. Burlet, T. Kasuya, S. Kunii, and T. Komatsubara, Evidence for a modulated ordering in CeB6 due to the Kondo effect, Solid State Commun. 39(3), 471 (1981)

    Article  ADS  Google Scholar 

  42. P. Vajeeston, P. Ravindran, C. Ravi, and R. Asokamani, Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides, Phys. Rev. B 63(4), 045115 (2001)

    Article  ADS  Google Scholar 

  43. J. H. Xu, and A. J. Freeman, Phase stability and electronic structure of ScAl3 and ZrAl3 and of Sc-stabilized cubic ZrAl3 precipitates, Phys. Rev. B 41(18), 12553 (1990)

    Article  ADS  Google Scholar 

  44. A. Pasturel, C. Colinet, and P. Hicter, Strong chemical interactions in disordered alloys, Physica B & C 132(2), 177 (1985)

    Article  ADS  Google Scholar 

  45. J. C. Phillips, Structure and electronic pseudogaps of stable quasicrystals, Phys. Rev. B 47(5), 2522 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, M., Liu, L., Cheng, Y. et al. First-principles study of structural, elastic, and electronic properties of CeB6 under pressure. Front. Phys. 10, 107104 (2015). https://doi.org/10.1007/s11467-015-0509-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-015-0509-6

Keywords

Navigation