Skip to main content
Log in

Effect of thermal annealing on sub-band-gap absorptance of microstructured silicon in air

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The optical absorption properties of femtosecond-laser-made “black silicon” as a function of the annealing conditions were investigated. We found that the annealing process changes the surface morphology and absorption spectroscopy of the “black silicon” samples, and obtained a maximum sub-band-gap absorptance value of approximately 30% by annealing at 1000 °C for 30 min. The thermal relaxation and atomic structural transformation mechanisms are used to describe the lattice recovery and the increase and decrease of the substitutional dopant atom concentration in the microstructured surface during the annealing. Our results confirm that: i) owing to the thermal relaxation, the lattice defects decrease with the increase of the annealing temperature; ii) the quasi-substitutional and interstitial configurations of the doped atoms transform into substitutional arrangements when the annealing temperature increases; iii) the quasi-substitutional and interstitial configurations with higher energies of the doped atoms transform into interstitial configurations with the lowest energy after high-temperature annealing for a long period of time, causing the deactivation or reactivation of the sub-band-gap absorptance by diffusion. The results demonstrate that the annealing can improve the properties of “black silicon”, including defects repairing, carrier lifetime lengthening, and retention of a high absorptive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, Microstructuring of silicon with femtosecond laser pulses, Appl. Phys. Lett. 73(12), 1673 (1998)

    Article  ADS  Google Scholar 

  2. R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses, J. Appl. Phys. 93(5), 2626 (2003)

    Article  ADS  Google Scholar 

  3. T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, Femtosecond laser-induced formation of spikes on silicon, Appl. Phys., A Mater. Sci. Process. 70(4), 383 (2000)

    Article  ADS  Google Scholar 

  4. M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask, Appl. Phys. Lett. 82(11), 1715 (2003)

    Article  ADS  Google Scholar 

  5. M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, Femtosecond laser-induced formation of submicrometer spikes on silicon in water, Appl. Phys. Lett. 85(23), 5694 (2004)

    Article  ADS  Google Scholar 

  6. D. Tran, Y. C. Lam, H. Zheng, V. Murukeshan, J. Chai, and D. E. Hardt, Femtosecond laser processing of crystalline silicon, http://hdl.handle.net/1721.1/7449 (2005)

    Google Scholar 

  7. H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, Nanostructured black silicon and the optical reflectance of graded-density surfaces, Appl. Phys. Lett. 94(23), 231121 (2009)

    Article  ADS  Google Scholar 

  8. T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses, J. Appl. Phys. 110(7), 073106 (2011)

    Article  ADS  Google Scholar 

  9. J. T. Sullivan, R. G. Wilks, M. T. Winkler, L. Weinhardt, D. Recht, A. J. Said, B. K. Newman, Y. Zhang, M. Blum, S. Krause, W. L. Yang, C. Heske, M. J. Aziz, M. Bär, and T. Buonassisi, Soft x-ray emission spectroscopy studies of the electronic structure of silicon supersaturated with sulfur, Appl. Phys. Lett. 99(14), 142102 (2011)

    Article  ADS  Google Scholar 

  10. M. T. Winkler, M. J. Sher, Y. T. Lin, M. J. Smith, H. Zhang, S. Gradečak, and E. Mazur, Studying femtosecond-laser hyperdoping by controlling surface morphology, J. Appl. Phys. 111(9), 093511 (2012)

    Article  ADS  Google Scholar 

  11. Z. D. Chen, Q. Wu, M. Yang, J. H. Yao, R. A. Rupp, Y. A. Cao, and J. J. Xu, Time-resolved photoluminescence of silicon microstructures fabricated by femtosecond laser in air, Opt. Express 21(18), 21329 (2013)

    Article  ADS  Google Scholar 

  12. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, Near-unity below-band-gap absorption by microstructured silicon, Appl. Phys. Lett. 78(13), 1850 (2001)

    Article  ADS  Google Scholar 

  13. J. E. Carey, C. H. Crouch, and E. Mazur, Femtosecond-laserassisted microstructuring of silicon surfaces, Opt. Photonics News 14(2), 32 (2003)

    Article  ADS  Google Scholar 

  14. J. E. Carey and E. Mazur, Femtosecond laser-assisted microstructuring of silicon for novel detector, sensing and display technologies, in: Lasers and Electro-Optics Society, 2003 (LEOS 2003). The 16th Annual Meeting of the IEEE, 481 (2003)

  15. B. K. Nayak, V. V. Iyengar, and M. C. Gupta, Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures, Prog. Photovolt. Res. Appl. 19(6), 631 (2011)

    Article  Google Scholar 

  16. Z. D. Chen, Q. Wu, M. Yang, B. Tang, J. H. Yao, R. A. Rupp, Y. A. Cao, and J. J. Xu, Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases, Laser Part. Beams 31(03), 539 (2013)

    Article  ADS  Google Scholar 

  17. L. Nesbit, Annealing characteristics of Si-rich SiO2 films, Appl. Phys. Lett. 46(1), 38 (1985)

    Article  ADS  Google Scholar 

  18. S. Kosowsky, P. S. Pershan, K. Krisch, J. Bevk, M. Green, D. Brasen, L. Feldman, and P. Roy, Evidence of annealing effects on a high-density Si/SiO2 interfacial layer, Appl. Phys. Lett. 70(23), 3119 (1997)

    Article  ADS  Google Scholar 

  19. G. Ghislotti, B. Nielsen, P. Asoka-Kumar, K. Lynn, A. Gambhir, L. Di Mauro, and C. Bottani, Effect of different preparation conditions on light emission from silicon implanted SiO2 layers, J. Appl. Phys. 79(11), 8660 (1996)

    Article  ADS  Google Scholar 

  20. C. Wu, C. H. Crouch, L. Zhao, and E. Mazur, Visible luminescence from silicon surfaces microstructured in air, Appl. Phys. Lett. 81(11), 1999 (2002)

    Article  ADS  Google Scholar 

  21. J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes, Opt. Lett. 30(14), 1773 (2005)

    Article  ADS  Google Scholar 

  22. R. A. Myers, R. Farrell, A. M. Karger, J. E. Carey, and E. Mazur, Enhancing near-infrared avalanche photodiode performance by femtosecond laser microstructuring, Appl. Opt. 45(35), 8825 (2006)

    Article  ADS  Google Scholar 

  23. T. G. Kim, J. M. Warrender, and M. J. Aziz, Strong subband-gap infrared absorption in silicon supersaturated with sulfur, Appl. Phys. Lett. 88(24), 241902 (2006)

    Article  ADS  Google Scholar 

  24. M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, Role of the background gas in the morphology and optical properties of laser-microstructured silicon, Chem. Mater. 17(14), 3582 (2005)

    Article  Google Scholar 

  25. B. R. Tull, M. T. Winkler, and E. Mazur, The role of diffusion in broadband infrared absorption in chalcogen-doped silicon, Appl. Phys. A, Mater. Sci. Process. 96(2), 327 (2009)

    Article  ADS  Google Scholar 

  26. B. K. Newman, M. J. Sher, E. Mazur, and T. Buonassisi, Reactivation of sub-bandgap absorption in chalcogenhyperdoped silicon, Appl. Phys. Lett. 98(25), 251905 (2011)

    Article  ADS  Google Scholar 

  27. M. J. Smith, Y. T. Lin, M. J. Sher, M. T. Winkler, E. Mazur, and S. Gradećak, Pressure-induced phase transformations during femtosecond-laser doping of silicon, J. Appl. Phys. 110(5), 053524 (2011)

    Article  ADS  Google Scholar 

  28. B. K. Newman, E. Ertekin, J. T. Sullivan, M. T. Winkler, M. A. Marcus, S. C. Fakra, M. J. Sher, E. Mazur, J. C. Grossman, and T. Buonassisi, Extended X-ray absorption fine structure spectroscopy of selenium-hyperdoped silicon, J. Appl. Phys. 114(13), 133507 (2013)

    Article  ADS  Google Scholar 

  29. H. Shao, Y. Li, J. Zhang, B. Y. Ning, W. Zhang, X. J. Ning, L. Zhao, and J. Zhuang, Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon, Europhys. Lett. 99(4), 46005 (2012)

    Article  Google Scholar 

  30. J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations, Appl. Surf. Sci. 245(1–4), 102 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Ping Cao  (曹丽萍) or Jiang-Hong Yao  (姚江宏).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, LP., Chen, ZD., Zhang, CL. et al. Effect of thermal annealing on sub-band-gap absorptance of microstructured silicon in air. Front. Phys. 10, 1–7 (2015). https://doi.org/10.1007/s11467-015-0491-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-015-0491-z

Keywords

Navigation