Skip to main content
Log in

Quantum computation in triangular decoherence-free subdynamic space

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

A formalism of quantum computing with 2000 qubits or more in decoherence-free subspaces is presented. The subspace is triangular with respect to the index related to the environment. The quantum states in the subspaces are projected states ruled by a subdynamic kinetic equation. These projected states can be used to perform general, large-scale decoherence-free quantum computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.O. Stamatescu, and H. D. Zeh, Decoherence and The Appearance of A Classical World in Quantum Theory, Heidelberg: Springer-Verlag, 1996

    Book  MATH  Google Scholar 

  2. P. Zanardi and M. Rasetti, Error avoiding quantum codes, Mod. Phys. Lett. B 11(25), 1085 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  3. P. Zanardi and M. Rasetti, Noiseless quantum codes, Phys. Rev. Lett. 79(17), 3306 (1997)

    Article  ADS  Google Scholar 

  4. P. Zanardi, Virtual quantum subsystems, Phys. Rev. Lett. 87(7), 077901 (2001)

    Article  ADS  Google Scholar 

  5. A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa, and C. Macchiavello, Stabilization of quantum computations by symmetrization, SIAM J. Comput. 26(5), 1541 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. L. M. Duan and G. C. Guo, Preserving coherence in quantum computation by pairing quantum bits, Phys. Rev. Lett. 79(10), 1953 (1997)

    Article  ADS  Google Scholar 

  7. D. A. Lidar, I. L. Chuang, and K. B. Whaley, Decoherence Free Subspaces for Quantum Computation, Phys. Rev. Lett. 81(12), 2594 (1998)

    Article  ADS  Google Scholar 

  8. A. Shabani and D. A. Lidar, Maps for general open quantum systems and a theory of linear quantum error correction, Phys. Rev. A 80(1), 012309 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. O. Oreshkov, T. A. Brun, D. A. Lidar, and H. Q. C. Fault-Tolerant, Fault-Tolerant Holonomic Quantum Computation, Phys. Rev. Lett. 102(7), 070502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Quantum computer, Nature 464, 45 (2010)

    Article  ADS  Google Scholar 

  11. P. Huang, X. Kong, N. Zhao, F. Shi, P. Wang, X. Rong, R.B. Liu, and J. Du, Observation of an anomalous decoherence effect in a quantum bath at room temperature, Nat. Commun. 2, 570 (2011)

    Article  ADS  Google Scholar 

  12. S. D. Filippo, Quantum computation using decoherence-free states of the physical operator algebra, Phys. Rev. A 62(5), 052307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. C. Schön and A. Beige, Analysis of a two-atom double-slit experiment based on environment-induced measurements, Phys. Rev. A 64(2), 023806 (2001)

    Article  ADS  Google Scholar 

  14. L. Viola, Quantum control via encoded dynamical decoupling, Phys. Rev. A 66(1), 012307 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Gheorghiu-Svirschevski, From Davydov solitons to decoherence-free subspaces: Self-consistent propagation of coherent-product states, Phys. Rev. E 64(5), 051907 (2001)

    Article  ADS  Google Scholar 

  16. Q. Bi, H. E. Ruda, and M. S. Zhan, Two-qubit quantum computing in a projected subspace, Phys. Rev. A 65(4), 042325 (2002)

    Article  ADS  Google Scholar 

  17. M. S. Tame, M. Paternostro, and M. S. Kim, One-way quantum computing in a decoherence-free subspace, New J. Phys. 9(6), 201 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  18. C. Bény, A. Kempf, and D. W. Kribs, Generalization of quantum error correction via the heisenberg picture, Phys. Rev. Lett. 98(10), 100502 (2007)

    Article  Google Scholar 

  19. D. A. Lidar and K. B. Whaley, in: Irreversible Quantum Dynamics, edited by F. Benatti and R. Floreanini, Leture Notes in Physics 622, 83, Berlin: Springer, 2003

  20. H. K. Ng, D. A. Lidar, and J. Preskill, Combining dynamical decoupling with fault-tolerant quantum computation, Phys. Rev. A 84, 012305 (2001)

    Article  ADS  Google Scholar 

  21. L. Viola, S. Lloyd, and E. Knill, Universal control of decoupled quantum systems, Phys. Rev. Lett. 83(23), 4888 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. S. Byrd and D. A. Lidar, Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing, Phys. Rev. Lett. 89(4), 047901 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  23. K. Khodjasteh and D. A. Lidar, Erratum: Quantum computing in the presence of spontaneous emission by a combined dynamical decoupling and quantum-error-correction strategy [Phys. Rev. A 68, 022322 (2003)], Phys. Rev. A 72(2), 029905 (2005)

    Article  ADS  Google Scholar 

  24. A. Sinatra, J. C. Dornstetter, and Y. Castin, Spin squeezing in Bose-Einstein condensates: Limits imposed by decoherence and non-zero temperature, Front. Phys. 7, 86 (2012)

    Article  Google Scholar 

  25. H. Wei, Z. J. Deng, W. L. Yang, and F. Zhou, Cavity quantum networks for quantum information processing in decoherence-free subspace, Front. Phys. China 4(1), 21 (2009)

    Article  ADS  Google Scholar 

  26. N. Boulant, M. A. Pravia, E. M. Fortunato, T. F. Havel, and D. G. Cory, Experimental con-catenation of quantum error correction with decoupling, Quantum Inf. Proc. 1(1/2), 135 (2002)

    Article  Google Scholar 

  27. J. Jing and L. A. Wu, Control of decoherence with no control, Scientific Reports 3, 2746 (2013)

    Article  ADS  Google Scholar 

  28. F. Dolde, V. Bergholm, et al., High-fidelity spin entanglement using optimal control, Nat. Commun. 3, 4371 (2014)

    Google Scholar 

  29. N. Y. Yao, C. R. Laumann, A. V. Gorshkov, H. Weimer, L. Jiang, J. I. Cirac, P. Zoller, and M. D. Lukin, Topologically protected quantum state transfer in a chiral spin liquid, Nat. Commun. 4, 1585 (2013)

    Article  ADS  Google Scholar 

  30. I. Antoniou and S. Tasaki, Generalized spectral decompositions of mixing dynamical systems, Int. J. Quantum Chem. 46(3), 425 (1993)

    Article  Google Scholar 

  31. T. Petrosky and I. Prigogine, Alternative formulation of classical and quantum dynamics for non-integrable systems, Physica A 175(1), 146 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  32. Qiao Bi, Subdynamics Theory and Application in Complex Dynamical System, Wuhan: Wuhan University of Technology Press, 1998 (in Chinese)

    Google Scholar 

  33. A. Bohm, H. D. Doebner, and P. Kielanowski, Irreversibility and Causality, Semigroups and Rigged Hilbert Spaces, Heidelberg: Springer-Verlag, 1998

    Book  MATH  Google Scholar 

  34. A. Bohm and M. Gadella, Dirac Kets, Gamow Vector and Gel’fand Triplets, Heidelberg: Springer-Verlag, 1989

    Book  Google Scholar 

  35. Q. Bi and H. E. Ruda, Quantum computing using entanglement states in a photonic band gap, J. Appl. Phys. 86(9), 5237 (1999)

    Article  ADS  Google Scholar 

  36. R. Balescu, Equilibrium and Non-Equilibrium Statistical Mechanics, New York: John Wiley & Sons, 1975.

    Google Scholar 

  37. Q. Bi, Some charicteristics and applications for quantum information, Journal of Modern Physics 03(09), 1070 (2012)

    Article  Google Scholar 

  38. B. E. Kane, A silicon-based nuclear spin quantum computer, Nature 393(6681), 133 (1998)

    Article  ADS  Google Scholar 

  39. R. Vrijen, E. Yablonovitch, K. Wang, H. W. Jiang, A. Balandin, V. Roychowduhory, T. Mor, and D. DiVincenzo, Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures, Phys. Rev. A 62(1), 012306 (2000)

    Article  ADS  Google Scholar 

  40. D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57(1), 120 (1998)

    Article  ADS  Google Scholar 

  41. W. A. Coish and D. Loss, Quantum computing with spins in solids, arXiv: cond-mat/0606550 (2006)

    Google Scholar 

  42. D. Kribs, R. La.amme, and D. Poulin, Unified and generalized approach to quantum error correction, Phys. Rev. Lett. 94(18), 180501 (2005)

    Article  ADS  Google Scholar 

  43. D. W. Kribs, R. La.amme, D. Poulin, and M. Lesosky, Operator quantum error correction, Quantum Inf. Compu. 6, 382 (2006)

    MATH  Google Scholar 

  44. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. Wootters, Mixed-state entanglement and quantum error correction, Phys. Rev. A 54(5), 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Bi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, Q. Quantum computation in triangular decoherence-free subdynamic space. Front. Phys. 10, 198–204 (2015). https://doi.org/10.1007/s11467-015-0461-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-015-0461-5

Keywords

Navigation