Skip to main content
Log in

Conductivity of carbon-based molecular junctions from ab-initio methods

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Carbon nanomaterials (CNMs) are prompting candidates for next generational electronics. In this review we provide a mini overview of recent results on the conductivity of carbon-based molecular junctions obtained from ab-initio methods. CNMs used as nanoelectrodes and molecular materials in molecular junctions are discussed. The functionalities that include the nanomechanically controlled molecular conductance switches, negative differential resistance devices, and electronic rectifiers realized by using CNMs have been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. The International Technology Roadmap for Semiconductors, 2011. Available at http://www.itrs.net. Accessed July 2012

  2. H. Choi and C. C. M. Mody, The long history of molecular electronics: Microelectronics origins of nanotechnology, Soc. Stud. Sci., 2009, 39(1): 11

    Article  Google Scholar 

  3. R. S. Mulliken, Structures of complexes formed by halogen molecules with aromatic and with oxygenated solvents, J. Am. Chem. Soc., 1950, 72(1): 600

    Article  Google Scholar 

  4. N. B. Zhitenev, A. Erbe, Z. Bao, W. Jiang, and E. Garfunkel, Molecular nano-junctions formed with different metallic electrodes, Nanotechnology, 2005, 16(4): 495

    Article  ADS  Google Scholar 

  5. N. S. Hush, An overview of the first half-century of molecular electronics, Ann. N. Y. Acad. Sci., 2003, 1006(1): 1

    Article  ADS  Google Scholar 

  6. T. Li, W. Hu, and D. Zhu, Nanogap electrodes, Adv. Mater., 2010, 22(2): 286

    Article  Google Scholar 

  7. J. J. Parks, A. R. Champagne, G. R. Hutchison, S. Flores-Torres, H. D. Abruña, and D. C. Ralph, Tuning the Kondo effect with a mechanically controllable break junction, Phys. Rev. Lett., 2007, 99: 026601

    Article  ADS  Google Scholar 

  8. B. Xu and N. Tao, Measurement of single-molecule resistance by repeated formation of molecular junctions, Science, 2003, 301(5637): 1221

    Article  ADS  Google Scholar 

  9. J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Large on-off ratios and negative differential resistance in a molecular electronic device, Science, 1999, 286(5444): 1550

    Article  Google Scholar 

  10. J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruña, P. L. McEuen, and D. C. Ralph, Coulomb blockade and the Kondo effect in single-atom transistors, Nature, 2002, 417: 722

    Article  ADS  Google Scholar 

  11. C. Z. Li, A. Bogozi, W. Huang, and N. J. Tao, Fabrication of stable metallic nanowires with quantized conductance, Nanotechnology, 1999, 10(2): 221

    Article  ADS  Google Scholar 

  12. J. O. Lee, G. Lientschnig, F. Wiertz, M. Struijk, R A J. Janssen, R. Egberink, D. N. Reinhoudt, P. Hadley, and C. Dekker, Absence of strong gate effects in electrical measurements on phenylene-based conjugated molecules, Nano Lett., 2003, 3(2): 113

    Article  ADS  Google Scholar 

  13. S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.-L. Brédas, N. Stuhr-Hansen, P. Hedegård, and T. Bjørnholm, Singleelectron transistor of a single organic molecule with access to several redox states, Nature, 2003, 425: 698

    Article  ADS  Google Scholar 

  14. L. Qin, S. Park, L. Huang, and C. Mirkin, On-wire lithography, Science, 2005, 309(5731): 113

    Article  ADS  Google Scholar 

  15. A. Hatzor and P. S. Weiss, Molecular rulers for scaling down nanostructures, Science, 2001, 291(5506): 1019

    ADS  Google Scholar 

  16. R. Krahne, A. Yacoby, H. Shtrikman, I. Bar-Joseph, T. Dadosh, and J. Sperling, Fabrication of nanoscale gaps in integrated circuits, Appl. Phys. Lett., 2002, 81(4): 730

    Article  ADS  Google Scholar 

  17. A. Aviram and M. A. Ratner, Molecular rectifiers, Chem. Phys. Lett., 1974, 29(2): 277

    Article  ADS  Google Scholar 

  18. C. J. Cattena, R. A. Bustos-Marun, and H. M. Pastawski, Crucial role of decoherence for electronic transport in molecular wires: Polyaniline as a case study, Phys. Rev. B, 2010, 82(14): 144201

    Article  ADS  Google Scholar 

  19. B. L. Feringa, R. A. van Delden, N. Koumura, and E. M. Geertsema, Chiroptical molecular switches, Chem. Rev., 2000, 100(5): 1789

    Article  Google Scholar 

  20. S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.-L. Brédas, N. Stuhr-Hansen, P. Hedegård, and T. Bjørnholm, Singleelectron transistor of a single organic molecule with access to several redox states, Nature, 2003, 425: 698

    Article  ADS  Google Scholar 

  21. J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Large on-off ratios and negative differential resistance in a molecular electronic device, Science, 1999, 286(5444): 1550

    Article  Google Scholar 

  22. X. Guo, J. P. Small, J. E. Klare, Y. Wang, M. S. Purewal, I. W. Tam, B. H. Hong, R. Caldwell, L. Huang, S. O’Brien, J. Yan, R. Breslow, S. J. Wind, J. Hone, P. Kim, and C. Nuckolls, Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules, Science, 2006, 311(5759): 356

    Article  ADS  Google Scholar 

  23. S. Chung, J. B. Parker, M. Bianchet, L. M. Amzel, and J. T. Stivers, Impact of linker strain and flexibility in the design of a fragment-based inhibitor, Nat. Chem. Biol., 2009, 5(6): 407

    Article  Google Scholar 

  24. R. McCreery and A. Bergren, Progress with molecular electronic junctions: Meeting experimental challenges in design and fabrication, Adv. Mater., 2009, 21(43): 4303

    Article  Google Scholar 

  25. G. J. Iafrate and M. A. Stroscio, Application of quantumbased devices: Trends and challenges, IEEE Trans. Electron. Dev., 1996, 43(10): 1621

    Article  ADS  Google Scholar 

  26. X. F. Li, H. Ren, L. L. Wang, K. Q. Cheng, J. Yang, and Y. Luo, Important structural factors controlling the conductance of DNA pairs in molecular junctions, J. Phys. Chem. C, 2010, 114(33): 14240

    Article  Google Scholar 

  27. M. Q. Long, L. Wang, K. Q. Chen, X. F. Li, B. Zou, and Z. Shuai, Coupling effect on the electronic transport through dimolecular junctions, Phys. Lett. A, 2007, 365(5–6): 489

    Article  ADS  Google Scholar 

  28. J. Heath, Molecular electronics, Annu. Rev. Mater. Res., 2009, 39(1): 1

    Article  ADS  Google Scholar 

  29. Y. B. Hu, Y. Zhu, H. J. Gao, and H. Guo, Conductance of an ensemble of molecular wires: A statistical analysis, Phys. Rev. Lett., 2005, 95(15): 156803

    Article  ADS  Google Scholar 

  30. Z. Liu, S. Y. Ding, Z. B. Chen, X. Wang, J. H. Tian, J. R. Anema, X. S. Zhou, D. Y. Wu, B. W. Mao, X. Xu, B. Ren, and Z. Q. Tian, Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy, Nat. Commun., 2011, 2: 305

    Article  ADS  Google Scholar 

  31. N. B. Zhitenev, W. Jiang, A. Erbe, Z. Bao, E. Garfunkel, D. M. Tennant, and R. A. Cirelli, Control of topography, stress and diffusion at molecule-metal interfaces, Nanotechnology, 2006, 17(5): 1272

    Article  ADS  Google Scholar 

  32. J. M. Seminario, C. E. De La Cruz, and P. A. Derosa, A theoretical analysis of metal-molecule contacts, J. Am. Chem. Soc., 2001, 123(23): 5616

    Article  Google Scholar 

  33. J. Kushmerick, D. Holt, J. Yang, J. Naciri, M. Moore, and R. Shashidhar, Metal-molecule contacts and charge transport across monomolecular layers: Measurement and theory, Phys. Rev. Lett., 2002, 89(8): 086802

    Article  ADS  Google Scholar 

  34. A. Bonifas, and R. McCreery, ‘Soft’ Au, Pt and Cu contacts for molecular junctions through surface-diffusion-mediated deposition, Nat. Nanotechnol., 2010, 5(8): 612

    Article  ADS  Google Scholar 

  35. C.-H. Ko, M.-J. Huang, M.-D. Fu, and C.-H. Chen, Superior contact for single-molecule conductance: Electronic coupling of thiolate and isothiocyanate on Pt, Pd, and Au, J. Am. Chem. Soc., 2009, 132: 756

    Article  Google Scholar 

  36. A. K. Patra, S. Singh, B. Barin, Y. Lee, J.-H. Ahn, E. del Barco, E. R. Mucciolo, and B. Özyilmaz, Dynamic spin injection into chemical vapor deposited grapheme, Appl. Phys. Lett., 2012, 101(16): 162407

    Article  ADS  Google Scholar 

  37. J. Beebe, B. Kim, C. Frisbie, and J. Kushmerick, Measuring relative barrier heights in molecular electronic junctions with transition voltage spectroscopy, ACS Nano, 2008, 2(5): 827

    Article  Google Scholar 

  38. X. F. Li, Electron and Spin Transport in Graphene-Based Nanodevices, Ph.D. thesis, KTH, Theoretical Chemistry and Biology, 2013

    Google Scholar 

  39. B. Li, X. Cao, H. G. Ong, J. W. Cheah, X. Zhou, Z. Yin, H. Li, J. Wang, F. Boey, W. Huang, and H. Zhang, Allcarbon electronic devices fabricated by directly grown singlewalled carbon nanotubes on reduced graphene oxide electrodes, Adv. Mater., 2010, 22(28): 3058

    Article  ADS  Google Scholar 

  40. P. Avouris, Z. Chen, and V. Perebeinos, Carbon-based electronics, Nat. Nanotechnol., 2007, 2(10): 605

    Article  ADS  Google Scholar 

  41. D. Wei, L. Xie, K. K. Lee, Z. Hu, S. Tan, W. Chen, C. H. Sow, K. Chen, Y. Liu, and A. T. S. Wee, Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes, Nat. Commun., 2013, 4: 1374

    Article  ADS  Google Scholar 

  42. X. F. Li, L. L. Wang, K. Q. Chen, and Y. Luo, Design of graphene-nanoribbon heterojunctions from first principles, J. Phys. Chem. C, 2011, 115(25): 12616

    Article  Google Scholar 

  43. P. Pomorski, C. Roland, and H. Guo, Quantum transport through short semiconducting nanotubes: A complex band structure analysis, Phys. Rev. B, 2004, 70(11): 115408

    Article  ADS  Google Scholar 

  44. S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Carbon nanotube quantum resistors, Science, 1998, 280(5370): 1744

    Article  ADS  Google Scholar 

  45. B. Wei, R. Spolenak, P. Kohler-Redlich, M. Ruhle, and E. Arzt, Electrical transport in pure and boron-doped carbon nanotubes, Appl. Phys. Lett., 1999, 74(21): 3149

    Article  ADS  Google Scholar 

  46. V. Strong, S. Dubin, M. F. El-Kady, A. Lech, Y. Wang, B. H. Weiller, and R. B. Kaner, Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices, ACS Nano, 2012, 6(2): 1395

    Article  Google Scholar 

  47. L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen, Pure carbon nanoscale devices: Nanotube heterojunctions, Phys. Rev. Lett., 1996, 76(6): 971

    Article  ADS  Google Scholar 

  48. Z. Yao, H. W. C. Postma, L. Balents, and C. Dekker, Carbon nanotube intramolecular junctions, Nature, 1999, 402(6759): 273

    Article  ADS  Google Scholar 

  49. W. Lu, G. Ruan, B. Genorio, Y. Zhu, B. Novosel, Z. Peng, and J. M. Tour, Functionalized graphene nanoribbons via anionic polymerization initiated by Alkali metal-intercalated carbon nanotubes, ACS Nano, 2013, 7(3): 2669

    Article  Google Scholar 

  50. X. Guo, A. Gorodetsky, J. Hone, J. Barton, and C. Nuckolls, Conductivity of a single DNA duplex bridging a carbon nanotube gap, Nat. Nanotechnol., 2008, 3(3): 163

    Article  ADS  Google Scholar 

  51. X. H. Zhang, X. F. Li, L. L. Wang, L. Xu, and K. W. Luo, Realistic-contact-induced enhancement of rectifying in carbon-nanotube/graphene-nanoribbon junctions, Appl. Phys. Lett., 2014, 104(10): 103107

    Article  ADS  Google Scholar 

  52. T. Chen, X. F. Li, L. Wang, K. Luo, Q. Li, X. Zhang, and X. Shang, Perfect spin filter and strong current polarization in carbon atomic chain with asymmetrical connecting points, Europhys. Lett., 2014, 105(5): 57003

    Article  ADS  Google Scholar 

  53. A. Heeger, Semiconducting and metallic polymers: The fourth generation of polymeric materials (Nobel lecture), Angew. Chem. Int. Ed., 2001, 40(14): 2591

    Article  Google Scholar 

  54. Y. Liang, Y. Wu, D. Feng, S. Tsai, H. Son, G. Li, and L. Yu, Development of new semiconducting polymers for high performance solar cells, J. Am. Chem. Soc., 2009, 131(1): 56

    Article  Google Scholar 

  55. C. Cattena, R. Bustos-Marún, and H. Pastawski, Crucial role of decoherence for electronic transport in molecular wires: Polyaniline as a case study, Phys. Rev. B, 2010, 82(14): 144201

    Article  ADS  Google Scholar 

  56. S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354(6348): 56

    Article  ADS  Google Scholar 

  57. T. Ebbesen and P. Ajayan, Large-scale synthesis of carbon nanotubes, Nature, 1992, 358(6383): 220

    Article  ADS  Google Scholar 

  58. G. Zhong, J. H. Warner, M. Fouquet, A. W. Robertson, B. Chen, and J. Robertson, Growth of ultrahigh density single-walled carbon nanotube forests by improved catalyst design, ACS Nano, 2012, 6(4): 2893

    Article  Google Scholar 

  59. X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang, and S. Fan, Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates, Nano Lett., 2009, 9(9): 3137

    Article  ADS  Google Scholar 

  60. K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, Electric field effect in atomically thin carbon films, Science, 2004, 306(5696): 666

    Article  ADS  Google Scholar 

  61. A. Geim and K. Novoselov, The rise of graphene, Nat. Mater., 2007, 6(3): 183

    Article  ADS  Google Scholar 

  62. Z. Yao, C. L. Kane, and C. Dekker, High-field electrical transport in single-wall carbon nanotubes, Phys. Rev. Lett., 2000, 84(13): 2941

    Article  ADS  Google Scholar 

  63. S. Hong and S. Myung, Nanotube Electronics: A flexible approach to mobility, Nat. Nanotechnol., 2007, 2(4): 207

    Article  ADS  Google Scholar 

  64. J. C. Charlier, X. Blase, and S. Roche, Electronic and transport properties of nanotubes, Rev. Mod. Phys., 2007, 79(2): 677

    Article  ADS  Google Scholar 

  65. X. F. Li, K. Q. Chen, L. Wang, and Y. Luo, Effects of interface roughness on electronic transport properties of nanotube molecule nanotube junctions, J. Phys. Chem. C, 2010, 114(28): 12335

    Article  Google Scholar 

  66. X. F. Li, L. Wang, K. Q. Chen, and Y. Luo, Nanomechanically induced molecular conductance switch, Appl. Phys. Lett., 2009, 95(23): 232118

    Article  ADS  Google Scholar 

  67. C. Thiele, H. Vieker, A. Beyer, B. S. Flavel, F. Hennrich, D. Munoz Torres, T. R. Eaton, M. Mayor, M. M. Kappes, A. Golzhauser, H. Löhneysen, and R. Krupke, Fabrication of carbon nanotube nanogap electrodes by helium ion sputtering for molecular contacts, Appl. Phys. Lett., 2014, 104(10): 103102

    Article  ADS  Google Scholar 

  68. B. J. Alder and T. E. Wainwright, Studies in molecular dynamics (I): General method, J. Chem. Phys., 1959, 31(2): 459

    Article  ADS  MathSciNet  Google Scholar 

  69. W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Quantum Monte Carlo simulations of solids, Rev. Mod. Phys., 2001, 73(1): 33

    Article  ADS  Google Scholar 

  70. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, New York: MacMillan, 1982

    Google Scholar 

  71. W. R. French, C. R. Iacovella, and P. T. Cummings, Largescale atomistic simulations of environmental effects on the formation and properties of molecular junctions, ACS Nano, 2012, 6(3): 2779

    Article  Google Scholar 

  72. R. M. Dreizler and E. K. U. Gross, Density Functional Theory, Berlin: Springer, 1990

    Book  MATH  Google Scholar 

  73. W. Koch and M. C. Holthausen, A Chemistry’s Guide to Density Functional Theory, Verlag: Wiley-VCH, 2001

    Book  Google Scholar 

  74. H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semi-conductors, New York: Springer-Verlag, 1998

    Google Scholar 

  75. J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B, 2001, 63(24): 245407

    Article  ADS  Google Scholar 

  76. M. Brandbyge, J. L. Mozos, P. Ordej’on, J. Taylor, and K. Stokbro, Density-functional method for nonequilibrium electron transport, Phys. Rev. B, 2002, 65(16): 165401

    Article  ADS  Google Scholar 

  77. Y. Xue, S. Datta, and M. A. Ratner, First-principles based matrix Green’s function approach to molecular electronic devices: general formalism, Chem. Phys., 2002, 281(2–3): 151

    Article  ADS  Google Scholar 

  78. J. E. Subotnik, T. Hansen, M. A. Ratner, and A. Nitzan, Nonequilibrium steady state transport via the reduced density matrix operator, J. Chem. Phys., 2009, 130(14): 144105

    Article  ADS  Google Scholar 

  79. S. Yeganeh, M. A. Ratner, M. Galperin, and A. Nitzan, Transport in state space: Voltage-dependent conductance calculations of benzene-1,4-dithiol, Nano Lett., 2009, 9(5): 1770

    Article  ADS  Google Scholar 

  80. H. Pierson, Handbook of carbon, graphite, diamond and fullerenes, Noyes publications, 1993

    Google Scholar 

  81. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature, 1985, 318(6042): 162

    Article  ADS  Google Scholar 

  82. P. Collins and P. Avouris, Nanotubes for electronics, Sci. Am., 2000, 283(6): 62

    Article  Google Scholar 

  83. T. Guo, P. Nikolaev, A. Rinzler, D. Tomanek, D. Colbert, and R. Smalley, Self-assembly of tubular fullerenes, J. Phys. Chem., 1995, 99(27): 10694

    Article  Google Scholar 

  84. T. Guo, P. Nikolaev, A. Thess, D. Colbert, and R. Smalley, Catalytic growth of single-walled manotubes by laser vaporization, Chem. Phys. Lett., 1995, 243(1–2): 49

    Article  ADS  Google Scholar 

  85. N. Inami, M. Ambri Mohamed, E. Shikoh, and A. Fujiwara, Synthesis-condition dependence of carbon nanotube growth by alcohol catalytic chemical vapor deposition method, Sci. Technol. Adv. Mater., 2007, 8(4): 292

    Article  Google Scholar 

  86. N. Ishigami, H. Ago, K. Imamoto, M. Tsuji, K. Iakoubovskii, and N. Minami, Crystal plane dependent growth of aligned single-walled carbon nanotubes on sapphire, J. Am. Chem. Soc., 2008, 130(30): 9918

    Article  Google Scholar 

  87. S. Sen and I. Puri, Flame synthesis of carbon nanofibres and nanofibre composites containing encapsulated metal particles, Nanotechnology, 2004, 15(3): 264

    Article  ADS  Google Scholar 

  88. T. Tanaka, H. Jin, Y. Miyata, S. Fujii, H. Suga, Y. Naitoh, T. Minari, T. Miyadera, K. Tsukagoshi, and H. Kataura, Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes, Nano Lett., 2009, 9(4): 1497

    Article  ADS  Google Scholar 

  89. H. Liu, D. Nishide, T. Tanaka, and H. Kataura, Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography, Nat. Commun., 2011, 2: 309

    Article  ADS  Google Scholar 

  90. X. Lu and Z. Chen, Curved Pi-conjugation, aromaticity, and the related chemistry of small fullerenes (<C60) and singlewalled carbon nanotubes, Chem. Rev., 2005, 105(10): 3643

    Article  Google Scholar 

  91. J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science, 2006, 312(5776): 1034

    Article  ADS  Google Scholar 

  92. X. F. Li, K. Q. Chen, L. Wang, M. Q. Long, B. S. Zou, and Z. Shuai, Effect of length and size of heterojunction on the transport properties of carbon-nanotube devices, Appl. Phys. Lett., 2007, 91(13): 133511

    Article  ADS  Google Scholar 

  93. X. F. Li, K. Q. Chen, L. L. Wang, M. Q. Long, B. S. Zou, and Z. Shuai, Effect of intertube interaction on the transport properties of a carbon double-nanotube device, J. Appl. Phys., 2007, 101(6): 064514

    Article  ADS  Google Scholar 

  94. N. R. Wilson and J. V. Macpherson, Carbon nanotube tips for atomic force microscopy, Nat. Nanotechnol., 2009, 4(8): 483

    Article  ADS  Google Scholar 

  95. J. Liu, J. K. Notbohm, R. W. Carpick, and K. T. Turner, Method for characterizing nanoscale wear of atomic force microscope tips, ACS Nano, 2010, 4(7): 3763

    Article  Google Scholar 

  96. K. Meinander, T. N. Jensen, S. B. Simonsen, S. Helveg, and J. V. Lauritsen, Quantification of tip-broadening in noncontact atomic force microscopy with carbon nanotube tips, Nanotechnology, 2012, 23(40): 405705

    Article  Google Scholar 

  97. J. V. Macpherson, Scanning probe microscopy: Taking a closer look at conductivity, Nat. Nanotechnol., 2011, 6(2): 84

    Article  ADS  Google Scholar 

  98. Y. Lisunova, I. Levkivskyi, and P. Paruch, Ultrahigh currents in dielectric-coated carbon nanotube probes, Nano Lett., 2013, 13(9): 4527

    Article  Google Scholar 

  99. C. Kranz, Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques, Analyst, 2013, 139(2): 336

    Article  ADS  Google Scholar 

  100. F. Xiong, A. D. Liao, D. Estrada, and E. Pop, Low-power switching of phase-change materials with carbon nanotube electrodes, Science, 2011, 332(6029): 568

    Article  ADS  Google Scholar 

  101. K. Gong, S. Chakrabarti, and L. Dai, Electrochemistry at carbon nanotube electrodes: Is the nanotube tip more active than the sidewall? Angew. Chem. Int. Ed., 2008, 47(29): 5446

    Article  Google Scholar 

  102. M. Del Valle, R. Guti’errez, C. Tejedor, and G. Cuniberti, Tuning the conductance of a molecular switch, Nat. Nanotechnol., 2007, 2(3): 176

    Article  ADS  Google Scholar 

  103. G. Wang, Y. Kim, M. Choe, T. W. Kim, and T. Lee, A new approach for molecular electronic junctions with a multilayer graphene electrode, Adv. Mater., 2011, 23(6): 755

    Article  Google Scholar 

  104. K. Y. Lian, Y. F. Ji, X. F. Li, M. X. Jin, D. J. Ding, and Y. Luo, Big bandgap in highly reduced graphene oxides, J. Phys. Chem. C, 2013, 117: 6049

    Article  Google Scholar 

  105. T. Chen, X. F. Li, L. L. Wang, Q. Li, K. W. Luo, X. H. Zhang, and L. Xu, Semiconductor to metal transition by tuning the location of N2AA in armchair graphene nanoribbons, J. Appl. Phys., 2014, 115(5): 053707

    Article  ADS  Google Scholar 

  106. X. F. Li, L. L. Wang, K. Q. Chen, and Y. Luo, Tuning the electronic transport properties of zigzag graphene nanoribbons via hydrogenation separators, J. Phys. Chem. C, 2011, 115(49): 24366

    Article  Google Scholar 

  107. X. F. Li, L. L. Wang, K. Q. Chen, and Y. Luo, Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions, J. Phys.: Condens. Matter, 2012, 24(9): 095801

    ADS  Google Scholar 

  108. R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, and L. Hornekaer, Bandgap opening in graphene induced by patterned hydrogen adsorption, Nat. Mater., 2010, 9(4): 315

    Article  ADS  Google Scholar 

  109. H. J. Xiang, E. J. Kan, S. H. Wei, X. G. Gong, and M. H. Whangbo, Thermodynamically stable single-side hydrogenated graphene, Phys. Rev. B, 2010, 82(16): 165425

    Article  ADS  Google Scholar 

  110. H. L. Gao, L. Wang, J. J. Zhao, F. Ding, and J. P. Lu, Band gap tuning of hydrogenated graphene: H coverage and configuration dependence, J. Phys. Chem. C, 2011, 115(8): 3236

    Article  Google Scholar 

  111. X. F. Li, L. L. Wang, K. Q. Chen, and Y. Luo, Strong current polarization and negative differential resistance in chiral graphene nanoribbons with reconstructed (2,1)-edges, Appl. Phys. Lett., 2012, 101(7): 073101

    Article  ADS  Google Scholar 

  112. Y. Wei, K. Jiang, L. Liu, Z. Chen, and S. Fan, Vacuumbreakdown-induced needle-shaped ends of multiwalled carbon nanotube yarns and their field emission applications, Nano Lett., 2007, 7(12): 3792

    Article  ADS  Google Scholar 

  113. J. Huang, S. Chen, Z. Ren, Z. Wang, K. Kempa, M. Naughton, G. Chen, and M. Dresselhaus, Enhanced ductile behavior of tensile-elongated individual double-walled and triple-walled carbon nanotubes at high temperatures, Phys. Rev. Lett., 2007, 98(18): 185501

    Article  ADS  Google Scholar 

  114. S. Barraza-Lopez, M. Vanevi’c, M. Kindermann, and M. Y. Chou, Effects of metallic contacts on electron transport through graphene, Phys. Rev. Lett., 2010, 104(7): 076807

    Article  ADS  Google Scholar 

  115. R. Addou, A. Dahal, and M. Batzill, Growth of a two-dimensional dielectric monolayer on quasi-freestanding graphene, Nat. Nanotechnol., 2012, 8(1): 41

    Article  ADS  Google Scholar 

  116. F. Xia, V. Perebeinos, Y. M. Lin, Y. Q. Wu, and P. Avouris, The origins and limits of metal-grapheme junction resistance, Nat. Nanotechnol., 2011, 6: 179

    Article  ADS  Google Scholar 

  117. O. Yazyev and S. Louie, Electronic transport in polycrystalline graphene, Nat. Mater., 2010, 9(10): 806

    Article  ADS  Google Scholar 

  118. J. Zhou, T. Hu, J. Dong, and Y. Kawazoe, Ferromagnetism in a graphene nanoribbon with grain boundary defects, Phys. Rev. B, 2012, 86(3): 035434

    Article  ADS  Google Scholar 

  119. A. R. Botello-Méndez, E. Cruz-Silva, F. Lopez-Urias, B. G. Sumpter, V. Meunier, M. Terrones, and H. Terrones, Spin polarized conductance in Hybrid graphene nanoribbons using 57 defects, ACS Nano, 2009, 3(11): 3606

    Article  Google Scholar 

  120. K. Y. Lian, X. F. Li, S. Duan, M. X. Jin, D. J. Ding, and Y. Luo, Tuning electronic and magnetic properties of armchair|zigzag hybrid graphene nanoribbons by the choice of supercell model of grain boundaries, J. Appl. Phys., 2014, 115(10): 104303

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XF., Luo, Y. Conductivity of carbon-based molecular junctions from ab-initio methods. Front. Phys. 9, 748–759 (2014). https://doi.org/10.1007/s11467-014-0424-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-014-0424-2

Keywords

Navigation