Skip to main content
Log in

Design and modeling of a novel soft parallel robot driven by endoskeleton pneumatic artificial muscles

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Owing to their inherent great flexibility, good compliance, excellent adaptability, and safe interactivity, soft robots have shown great application potential. The advantages of light weight, high efficiency, non-polluting characteristic, and environmental adaptability provide pneumatic soft robots an important position in the field of soft robots. In this paper, a soft robot with 10 soft modules, comprising three uniformly distributed endoskeleton pneumatic artificial muscles, was developed. The robot can achieve flexible motion in 3D space. A novel kinematic modeling method for variable-curvature soft robots based on the minimum energy method was investigated, which can accurately and efficiently analyze forward and inverse kinematics. Experiments show that the robot can be controlled to move to the desired position based on the proposed model. The prototype and modeling method can provide a new perspective for soft robot design, modeling, and control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a t,i :

Position coordinates of the ith muscle endpoint in the tth soft module

d :

Elastic rod diameter

d a :

Side length of the airbag

d r :

Robot diameter

e :

Robot endpoint position error

E :

Young’s modulus

E e :

Elastic strain energy

E p :

External force potential energy

E t :

Total elastic potential energy

e 1, e 2, e 3 :

Unit vectors of the x, y, and z axes, respectively

f g :

Robot gravity

F c :

Load carrying capacity of PAM

f i :

External force of the ith discretized nodes Ni

F :

Internal force

k 1, k 2 :

Flexural stiffnesses of the x and y axes, respectively

k 3 :

Torsional stiffness of the z axis

l_p :

Pneumatic artificial muscle length

L :

Robot length

N i :

The ith discretized nodes

P :

Simulation position of the robot endpoint

P a :

Experimental position of the robot endpoint

P in :

Air pressure inside the PAM

P out :

Atmospheric pressure

r c :

Constraint disk radius

r :

Position vector of the robot discrete nodes

(P 1 P 2 P 3):

Position of the desired point

(α, β, θ):

Euler angles

ϕ :

Relative rotation angle of adjacent coordinate systems

ω :

Derivative of ϕ with respect to arc coordinate s

References

  1. Rus D, Tolley M T. Design, fabrication and control of soft robots. Nature, 2015, 521(7553): 467–475

    Article  Google Scholar 

  2. Liu T L, Xu W F, Yang T W, Li Y M. A hybrid active and passive cable-driven segmented redundant manipulator: design, kinematics, and planning. IEEE/ASME Transactions on Mechatronics, 2021, 26(2): 930–942

    Article  Google Scholar 

  3. Guan Q H, Sun J, Liu Y J, Wereley N M, Leng J S. Novel bending and helical extensile/contractile pneumatic artificial muscles inspired by elephant trunk. Soft Robotics, 2020, 7(5): 597–614

    Article  Google Scholar 

  4. Aubin C A, Choudhury S, Jerch R, Archer L A, Pikul J H, Shepherd R F. Electrolytic vascular systems for energy-dense robots. Nature, 2019, 571(7763): 51–57

    Article  Google Scholar 

  5. Kim Y, Yuk H, Zhao R K, Chester S A, Zhao X H. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature, 2018, 558(7709): 274–279

    Article  Google Scholar 

  6. Li G R, Chen X P, Zhou F H, Liang Y M, Xiao Y H, Cao X N, Zhang Z, Zhang M Q, Wu B S, Yin S Y, Xu Y, Fan H B, Chen Z, Song W, Yang W J, Pan B B, Hou J Y, Zou W F, He S P, Yang X X, Mao G Y, Jia Z, Zhou H F, Li T F, Qu S X, Xu Z B, Huang Z L, Luo Y W, Xie T, Gu J, Zhu S Q, Yang W. Self-powered soft robot in the Mariana Trench. Nature, 2021, 591(7848): 66–71

    Article  Google Scholar 

  7. Park S J, Gazzola M, Park K S, Park S, Di Santo V, Blevins E L, Lind J U, Campbell P H, Dauth S, Capulli A K, Pasqualini F S, Ahn S, Cho A, Yuan H Y, Maoz B M, Vijaykumar R, Choi J W, Deisseroth K, Lauder G V, Mahadevan L, Parker K K. Phototactic guidance of a tissue-engineered soft-robotic ray. Science, 2016, 353(6295): 158–162

    Article  Google Scholar 

  8. Wehner M, Truby R L, Fitzgerald D J, Mosadegh B, Whitesides G M, Lewis J A, Wood R J. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 2016, 536(7617): 451–455

    Article  Google Scholar 

  9. Zhu M J, Do T N, Hawkes E, Visell Y. Fluidic fabric muscle sheets for wearable and soft robotics. Soft Robotics, 2020, 7(2): 179–197

    Article  Google Scholar 

  10. Cappello L, Galloway K C, Sanan S, Wagner D A, Granberry R, Engelhardt S, Haufe F L, Peisner J D, Walsh C J. Exploiting textile mechanical anisotropy for fabric-based pneumatic actuators. Soft Robotics, 2018, 5(5): 662–674

    Article  Google Scholar 

  11. Tolley M T, Shepherd R F, Mosadegh B, Galloway K C, Wehner M, Karpelson M, Wood R J, Whitesides G M. A resilient, untethered soft robot. Soft Robotics, 2014, 1(3): 213–223

    Article  Google Scholar 

  12. Katzschmann R K, Marchese A D, Rus D. Autonomous object manipulation using a soft planar grasping manipulator. Soft Robotics, 2015, 2(4): 155–164

    Article  Google Scholar 

  13. Peele B N, Wallin T J, Zhao H C, Shepherd R F. 3D printing antagonistic systems of artificial muscle using projection stereolithography. Bioinspiration & Biomimetics, 2015, 10(5): 055003

    Article  Google Scholar 

  14. Terryn S, Brancart J, Lefeber D, Van Assche G, Vanderborght B. Self-healing soft pneumatic robots. Science Robotics, 2017, 2(9): eaan4628

    Article  Google Scholar 

  15. Li S Y, Wang K W. Fluidic origami: a plant-inspired adaptive structure with shape morphing and stiffness tuning. Smart Materials and Structures, 2015, 24(10): 105031

    Article  Google Scholar 

  16. Robertson M A, Paik J. New soft robots really suck: vacuum-powered systems empower diverse capabilities. Science Robotics, 2017, 2(9): eaan6357

    Article  Google Scholar 

  17. Gorissen B, Reynaerts D, Konishi S, Yoshida K, Kim J W, De Volder M. Elastic inflatable actuators for soft robotic applications. Advanced Materials, 2017, 29(43): 1604977

    Article  Google Scholar 

  18. Kim W, Byun J, Kim J K, Choi W Y, Jakobsen K, Jakobsen J, Lee D Y, Cho K J. Bioinspired dual-morphing stretchable origami. Science Robotics, 2019, 4(36): eaay3493

    Article  Google Scholar 

  19. Martinez R V, Fish C R, Chen X, Whitesides G M. Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Advanced Functional Materials, 2012, 22(7): 1376–1384

    Article  Google Scholar 

  20. Yang D, Verma M S, So J H, Mosadegh B, Keplinger C, Lee B, Khashai F, Lossner E, Suo Z G, Whitesides G M. Buckling pneumatic linear actuators inspired by muscle. Advanced Materials Technologies, 2016, 1(3): 1600055

    Article  Google Scholar 

  21. Jiao Z D, Ji C, Zou J, Yang H Y, Pan M. Vacuum-powered soft pneumatic twisting actuators to empower new capabilities for soft robots. Advanced Materials Technologies, 2019, 4(1): 1800429

    Article  Google Scholar 

  22. Li S G, Vogt D M, Rus D, Wood R J. Fluid-driven origami-inspired artificial muscles. PNAS, 2017, 114(50): 13132–13137

    Article  Google Scholar 

  23. Deshpande A R, Tse Z T H, Ren H L. Origami-inspired bidirectional soft pneumatic actuator with integrated variable stiffness mechanism. In: Proceedings of the 2017 18th International Conference on Advanced Robotics (ICAR). IEEE, 2017, 417–421

  24. Lee J G, Rodrigue H. Origami-based vacuum pneumatic artificial muscles with large contraction ratios. Soft Robotics, 2019, 6(1): 109–117

    Article  Google Scholar 

  25. Renda F, Boyer F, Dias J, Seneviratne L. Discrete Cosserat approach for multisection soft manipulator dynamics. IEEE Transactions on Robotics, 2018, 34(6): 1518–1533

    Article  Google Scholar 

  26. Burgner-Kahrs J, Rucker D C, Choset H. Continuum robots for medical applications: a survey. IEEE Transactions on Robotics, 2015, 31(6): 1261–1280

    Article  Google Scholar 

  27. Webster R JIII, Jones B A. Design and kinematic modeling of constant curvature continuum robots: a review. The International Journal of Robotics Research, 2010, 29(13): 1661–1683

    Article  Google Scholar 

  28. Sofla M S, Sadigh M J, Zareinejad M. Design and dynamic modeling of a continuum and compliant manipulator with large workspace. Mechanism and Machine Theory, 2021, 164: 104413

    Article  Google Scholar 

  29. Tan N, Gu X Y, Ren H L. Design, characterization and applications of a novel soft actuator driven by flexible shafts. Mechanism and Machine Theory, 2018, 122: 197–218

    Article  Google Scholar 

  30. Garriga-Casanovas A, Rodriguez y Baena F. Complete follow-the-leader kinematics using concentric tube robots. The International Journal of Robotics Research, 2018, 37(1): 197–222

    Article  Google Scholar 

  31. Schiller L, Seibel A, Schlattmann J. A lightweight simulation model for soft robot’s locomotion and its application to trajectory optimization. IEEE Robotics and Automation Letters, 2020, 5(2): 1199–1206

    Article  Google Scholar 

  32. Yang C H, Geng S N, Walker I, Branson D T, Liu J G, Dai J S, Kang R J. Geometric constraint-based modeling and analysis of a novel continuum robot with shape memory alloy initiated variable stiffness. International Journal of Robotics Research, 2020, 39(14): 1620–1634

    Article  Google Scholar 

  33. Zeng W H, Yan J Y, Yan K, Huang X, Wang X F, Cheng S S. Modeling a symmetrically-notched continuum neurosurgical robot with non-constant curvature and superelastic property. IEEE Robotics and Automation Letters, 2021, 6(4): 6489–6496

    Article  Google Scholar 

  34. Singh I, Amara Y, Melingui A, Mani Pathak P, Merzouki R. Modeling of continuum manipulators using pythagorean hodograph curves. Soft Robotics, 2018, 5(4): 425–442

    Article  Google Scholar 

  35. Godage I S, Medrano-Cerda G A, Branson D T, Guglielmino E, Caldwell D G. Modal kinematics for multisection continuum arms. Bioinspiration & Biomimetics, 2015, 10(3): 035002

    Article  Google Scholar 

  36. Yang J Z, Peng H J, Zhou W Y, Zhang J, Wu Z G. A modular approach for dynamic modeling of multisegment continuum robots. Mechanism and Machine Theory, 2021, 165: 104429

    Article  Google Scholar 

  37. Yuan H, Zhou L L, Xu W F. A comprehensive static model of cable-driven multi-section continuum robots considering friction effect. Mechanism and Machine Theory, 2019, 135: 130–149

    Article  Google Scholar 

  38. Huang X J, Zou J, Gu G Y. Kinematic modeling and control of variable curvature soft continuum robots. IEEE/ASME Transactions on Mechatronics, 2021, 26(6): 3175–3185

    Article  Google Scholar 

  39. Bieze T M, Largilliere F, Kruszewski A, Zhang Z K, Merzouki R, Duriez C. Finite element method-based kinematics and closed-loop control of soft, continuum manipulators. Soft Robotics, 2018, 5(3): 348–364

    Article  Google Scholar 

  40. Sadati S M H, Shiva A, Renson L, Rucker C, Althoefer K, Nanayakkara T, Bergeles C, Hauser H, Walker I D. Reduced order vs. discretized lumped system models with absolute and relative states for continuum manipulators. In: Proceedings of Royal Statistics Society International Conference. Belfast, 2019, 1–10

  41. Godage I S, Wirz R, Walker I D, WebsterIII R J. Accurate and efficient dynamics for variable-length continuum arms: a center of gravity approach. Soft Robotics, 2015, 2(3): 96–106

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51975566, 61821005, and U1908214), and the Key Research Program of Frontier Sciences, CAS, China (Grant No. ZDBS-LY-JSC011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuwang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Yuan, T., Yu, Y. et al. Design and modeling of a novel soft parallel robot driven by endoskeleton pneumatic artificial muscles. Front. Mech. Eng. 17, 22 (2022). https://doi.org/10.1007/s11465-022-0678-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11465-022-0678-2

Keywords

Navigation