Skip to main content
Log in

Symmetry of Positive Solutions for Fully Nonlinear Nonlocal Systems

  • Research Article
  • Published:
Frontiers of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider the nonlinear systems involving fully nonlinear nonlocal operators

$$\left\{ {\matrix{{{F_\alpha }(u(x)) = {v^p}(x) + {k_1}(x){u^r}(x),} & {x \in {\mathbb{R}^N},} \cr {{G_\beta }(v(x)) = {u^q}(x) + {k_2}(x){v^s}(x),} & {x \in {\mathbb{R}^N}} \cr } } \right.$$

and

$$\left\{ {\matrix{{{F_\alpha }(u(x)) = {{{v^p}(x)} \over {|x{|^a}}} + {{{u^r}(x)} \over {|x{|^b}}},} & {x \in {\mathbb{R}^N}\backslash \{ 0\} ,} \cr {{G_\beta }(v(x)) = {{{u^q}(x)} \over {|x{|^c}}} + {{{v^s}(x)} \over {|x{|^d}}},} & {x \in {\mathbb{R}^N}\backslash \{ 0\} ,} \cr } } \right.$$

where ki(x) ≥ 0, i = 1, 2, 0 < α, β < 2, p, q, r, s > 1, a, b, c, d > 0. By proving a narrow region principle and other key ingredients for the above systems and extending the direct method of moving planes for the fractional p-Laplacian, we derive the radial symmetry of positive solutions about the origin. During these processes, we estimate the local lower bound of the solutions by constructing sub-solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brändle C., Colorado E., de Pablo A., Sánchez U., A concave-convex elliptic problem involving the fractional Laplacian. Proc. Roy. Soc. Edinburgh Sect. A, 2013, 143(1): 39–71

    Article  MathSciNet  Google Scholar 

  2. Caffarelli L., Silvestre L., An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations, 2007, 32(7–9): 1245–1260

    Article  MathSciNet  Google Scholar 

  3. Caffarelli L., Silvestre L., Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math., 2009, 62(5): 597–638

    Article  MathSciNet  Google Scholar 

  4. Cai M.M., Li F.Q., Properties of positive solutions to nonlocal problems with negative exponents in unbounded domains. Nonlinear Anal., 2020, 200: 112086, 14 pp.

    Article  MathSciNet  Google Scholar 

  5. Chen W.X., D’Ambrosio L., Li Y., Some Liouville theorems for the fractional Laplacian. Nonlinear Anal., 2015, 121: 370–381

    Article  MathSciNet  Google Scholar 

  6. Chen W.X., Li C.M., Methods on Nonlinear Elliptic Equations. AIMS Ser. Differ. Equ. Dyn. Syst., Vol. 4, Springfield, MO: AIMS, 2010

    Google Scholar 

  7. Chen W.X., Li C.M., Maximum principles for the fractional p-Laplacian and symmetry of solutions. Adv. Math., 2018, 335: 735–758

    Article  MathSciNet  Google Scholar 

  8. Chen W.X., Li C.M., Li G.F., Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions. Calc. Var. Partial Differential Equations, 2017, 56 (2): Paper No. 29, 18 pp.

  9. Chen W.X., Li C.M., Li Y., A direct method of moving planes for the fractional Laplacian. Adv. Math., 2017, 308: 404–437

    Article  MathSciNet  Google Scholar 

  10. Chen W.X., Li C.M., Ou B., Classification of solutions for an integral equation. Commun. Pure Appl. Math., 2006, 59(3): 330–343

    Article  MathSciNet  Google Scholar 

  11. Chen W.X., Li Y., Ma P., The Fractional Laplacian. Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., 2020

    Book  Google Scholar 

  12. Chen W.X., Zhu J.Y., Indefinite fractional elliptic problem and Liouville theorems. J. Differential Equations, 2016, 260(5): 4758–4785

    Article  ADS  MathSciNet  Google Scholar 

  13. Fazly M., Liouville theorems for the polyharmonic Hénon–Lane–Emden system. Methods Appl. Anal., 2014, 21(2): 265–281

    Article  MathSciNet  Google Scholar 

  14. Li D.Y., Niu P.C., Zhuo R., Symmetry and nonexistence of positive solutions of integral systems with Hardy terms. J. Math. Anal. Appl., 2015, 424(2): 915–931

    Article  MathSciNet  Google Scholar 

  15. Liu B.Y., Ma L., Radial symmetry results for fractional Laplacian systems. Nonlinear Anal., 2016, 146: 120–135

    Article  MathSciNet  Google Scholar 

  16. Luo L.F., Zhang Z.C., Symmetry and nonexistence of positive solutions for fully nonlinear nonlocal systems. Appl. Math. Lett., 2022, 124: Paper No. 107674, 7 pp.

  17. Ma P., Li Y., Zhang J.H., Symmetry and nonexistence of positive solutions for fractional systems. Commun. Pure Appl. Anal., 2018, 17(3): 1053–1070

    Article  MathSciNet  Google Scholar 

  18. Wang P.Y., Niu P.C., A direct method of moving planes for a fully nonlinear nonlocal system. Commun. Pure Appl. Anal., 2017, 16(5): 1707–1718

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for his/her careful reading and valuable suggestions, which made this paper more readable. This work was partially supported by NSFC (Nos. 12271423, 12071044) and Fundamental Research Funds for the Central Universities (No. xzy012022005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengce Zhang.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, L., Zhang, Z. Symmetry of Positive Solutions for Fully Nonlinear Nonlocal Systems. Front. Math 19, 225–249 (2024). https://doi.org/10.1007/s11464-021-0377-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-021-0377-z

Keywords

MSC2020

Navigation