Skip to main content
Log in

On combinatorial Gauss-Bonnet Theorem for general Euclidean simplicial complexes

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

For a finitely triangulated closed surface M 2, let αx be the sum of angles at a vertex x. By the well-known combinatorial version of the 2- dimensional Gauss-Bonnet Theorem, it holds Σx(2π - αx) = 2πχ(M 2), where χ denotes the Euler characteristic of M 2, αx denotes the sum of angles at the vertex x, and the sum is over all vertices of the triangulation. We give here an elementary proof of a straightforward higher-dimensional generalization to Euclidean simplicial complexes K without assuming any combinatorial manifold condition. First, we recall some facts on simplicial complexes, the Euler characteristics and its local version at a vertex. Then we define δ(τ) as the normed dihedral angle defect around a simplex τ. Our main result is Στ (-1)dim(τ)δ(τ) = χ(K), where the sum is over all simplices τ of the triangulation. Then we give a definition of curvature κ(x) at a vertex and we prove the vertex-version Σ xK0 κ(x) = χ(K) of this result. It also possible to prove Morse-type inequalities. Moreover, we can apply this result to combinatorial (n + 1)-manifolds W with boundary B, where we prove that the difference of Euler characteristics is given by the sum of curvatures over the interior of W plus a contribution from the normal curvature along the boundary B:

$$\chi \left( W \right) - \frac{1}{2}\chi \left( B \right) = \sum {_{\tau \in W - B}} {\left( { - 1} \right)^{\dim \left( \tau \right)}} + \sum {_{\tau \in B}} {\left( { - 1} \right)^{\dim \left( \tau \right)}}\rho \left( \tau \right)$$

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allendoerfer C B, Weil A. The Gauss-Bonnet Theorem for Riemannian polyhedra. Trans Amer Math Soc, 1943, 53: 101–129

    Article  MathSciNet  MATH  Google Scholar 

  2. Banchoff T F. Critical points and curvature for embedded polyhedra. J Differential Geom, 1967, 1: 245–256

    MathSciNet  MATH  Google Scholar 

  3. Banchoff T F. Critical points and curvature for embedded polyhedral surfaces. Amer Math Monthly, 1970, 77: 475–485

    Article  MathSciNet  MATH  Google Scholar 

  4. Banchoff T F. Critical points and curvature for embedded polyhedra. II. In: Differential Geometry (College Park, Md, 1981/1982). Progr Math, Vol 32. Boston: Birkhäuser, 1983, 34–55

    Google Scholar 

  5. Berger M. Geometry I. Berlin: Springer, 1987

    Book  MATH  Google Scholar 

  6. Bloch E D. The angle defect for arbitrary polyhedra. Beiträge Algebra Geom, 1998, 39: 379–393

    MathSciNet  MATH  Google Scholar 

  7. Bloch E D. Critical points and the angle defect. Geom Dedicata, 2004, 109: 121–137

    Article  MathSciNet  MATH  Google Scholar 

  8. Bloch E D. The angle defect for odd-dimensional simplicial manifolds. Discrete Comput Geom, 2006, 35(2): 311–328

    Article  MathSciNet  MATH  Google Scholar 

  9. Chern S S. A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann of Math, 1944, 45: 747–752

    Article  MathSciNet  MATH  Google Scholar 

  10. Conway J H, Guy R K. The Book of Numbers. Berlin: Springer, 1996, 107–109

    Book  MATH  Google Scholar 

  11. Hopf H. Differential Geometry in the Large. Lecture Notes in Math, Vol 1000. Berlin: Springer, 1989

    Google Scholar 

  12. Klee V. A combinatorial analogue of Poincaré’s duality theorem. Canad J Math, 1964, 16: 517–531

    Article  MathSciNet  MATH  Google Scholar 

  13. Levitt N. The Euler characteristic is the unique locally determined numerical homotopy invariant of finite complexes. Discrete Comput Geom, 1992, 7(1): 59–67

    Article  MathSciNet  MATH  Google Scholar 

  14. MacLaurin C, Robertson G. Euler characteristic in odd dimensions. Austral Math Soc Gaz, 2003, 30(4): 195–199

    MathSciNet  MATH  Google Scholar 

  15. Milnor J W, Stasheff J D. Characteristic Classes. Ann of Math Stud, Vol 76. Princeton: Princeton Univ Press, 1974

    Google Scholar 

  16. Murakami J. Volume formulas for a spherical tetrahedron. Proc Amer Math Soc, 2012, 140(9): 3289–3295

    Article  MathSciNet  MATH  Google Scholar 

  17. Rourke C, Sanderson B. Introduction to Piecewise-Linear Topology. Berlin: Springer, 1982

    MATH  Google Scholar 

  18. Spanier E H. Algebraic Topology. Berlin: Springer, 1966

    MATH  Google Scholar 

  19. Wall C T C. Arithmetic invariants of subdivision of complexes. Canad J Math, 1966, 18: 92–96

    Article  MathSciNet  MATH  Google Scholar 

  20. Wu H-H. Historical development of the Gauss-Bonnet Theorem. Sci China Ser A, 2008, 51(4): 777–784

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Klaus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klaus, S. On combinatorial Gauss-Bonnet Theorem for general Euclidean simplicial complexes. Front. Math. China 11, 1345–1362 (2016). https://doi.org/10.1007/s11464-016-0575-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-016-0575-2

Keywords

MSC

Navigation