Skip to main content
Log in

A posteriori error estimates for optimal control problems constrained by convection-diffusion equations

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

We propose a characteristic finite element discretization of evolutionary type convection-diffusion optimal control problems. Nondivergence-free velocity fields and bilateral inequality control constraints are handled. Then some residual type a posteriori error estimates are analyzed for the approximations of the control, the state, and the adjoint state. Based on the derived error estimators, we use them as error indicators in developing efficient multi-set adaptive meshes characteristic finite element algorithm for such optimal control problems. Finally, one numerical example is given to check the feasibility and validity of multi-set adaptive meshes refinements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis. New York: Wiley-Interscience, 2000

    Book  MATH  Google Scholar 

  2. Bangerth W, Rannacher R. Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics, ETH Zurich. Basel: Birkhäuser, 2003

    Book  MATH  Google Scholar 

  3. Becker R, Kapp H, Rannacher R. Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J Control Optim, 2000, 39: 113–132

    Article  MATH  MathSciNet  Google Scholar 

  4. Chang Y Z, Yang D P, Zhang Z J. Adaptive finite element approximation for a class of parameter estimation problems. Appl Math Comput, 2014, 231: 284–298

    Article  MathSciNet  Google Scholar 

  5. Ciarlet P G. The Finite Element Method for Elliptic Problems. Philadelphia: SIAM, 2002

    Book  Google Scholar 

  6. Douglas J, Russell T F. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J Numer Anal, 1982, 19: 871–885

    Article  MATH  MathSciNet  Google Scholar 

  7. Ewing R E, Russell T F, Wheeler M F. Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput Methods Appl Mech Engrg, 1984, 47: 73–92

    Article  MATH  MathSciNet  Google Scholar 

  8. Fu H F. A characteristic finite element method for optimal control problems governed by convection-diffusion equations. J Comput Appl Math, 2010, 235: 825–836

    Article  MATH  MathSciNet  Google Scholar 

  9. Fu H F, Rui H X. A priori error estimates for optimal control problems governed by transient advection-diffusion equations. J Sci Comput, 2009, 38: 290–315

    Article  MATH  MathSciNet  Google Scholar 

  10. Fu H F, Rui H X. A priori and a posteriori error estimates for the method of lumped masses for parabolic optimal control problems. Int J Comput Math, 2011, 88: 2798–2823

    Article  MATH  MathSciNet  Google Scholar 

  11. Fu H F, Rui H X. Adaptive characteristic finite element approximation of convection-diffusion optimal control problems. Numer Methods Partial Differential Equations, 2013, 29: 978–998

    Article  MathSciNet  Google Scholar 

  12. Ge L, Liu W B, Yang D P. Adaptive finite element approximation for a constrained optimal control problem via multi-meshes. J Sci Comput, 2009, 41: 238–255

    Article  MATH  MathSciNet  Google Scholar 

  13. Houston P, Süli E. Adaptive Lagrange-Galerkin methods for unsteady convection-diffusion problems. Math Comput, 2001, 70: 77–106

    Article  MATH  Google Scholar 

  14. Kufner A, John O, Fucik S. Function Spaces. Leyden: Noordhoff, 1977

    MATH  Google Scholar 

  15. Li R. On multi-mesh h-adaptive meshes. J Sci Comput, 2005, 24: 321–341

    Article  MATH  MathSciNet  Google Scholar 

  16. Li R, Liu W B, Ma H P, Tang T. Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J Control Optim, 2002, 41: 1321–1349

    Article  MATH  MathSciNet  Google Scholar 

  17. Lions J L. Optimal Control of Systems Governed by Partial Differential Equations. Berlin: Springer-Verlag, 1971

    Book  MATH  Google Scholar 

  18. Liu W B, Yan N N. A posteriori error estimates for optimal boundary control. SIAM J Numer Anal, 2001, 39: 73–99

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu W B, Yan N N. A posteriori error estimates for distributed convex optimal control problems. Adv Comput Math, 2001, 15: 285–309

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu W B, Yan N N. A posteriori error estimates for control problems governed by nonlinear elliptic equations. Appl Numer Math, 2003, 47: 173–187

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu W B, Yan N N. A posteriori error estimates for optimal control problems governed by parabolic equations. Numer Math, 2003, 93: 497–521

    Article  MATH  MathSciNet  Google Scholar 

  22. Liu W B, Yan N N. Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Beijing: Science Press, 2008

    Google Scholar 

  23. Meidner D, Vexler B. Adaptive space-time finite element methods for parabolic optimization problems. SIAM J Control Optim, 2007, 4: 116–142

    Article  MathSciNet  Google Scholar 

  24. Pironneau O. Optimal Shape Design for Elliptic Systems. Berlin: Springer-Verlag, 1984

    Book  MATH  Google Scholar 

  25. Rui H X, Tabata M. A second order characteristic finite element scheme for convectiondiffusion problems. Numer Math, 2002, 92: 161–177

    Article  MATH  MathSciNet  Google Scholar 

  26. Rui H X, Tabata M. A mass-conservative characteristic finite element scheme for convection-diffusion problems. J Sci Comput, 2010, 43: 416–432

    Article  MATH  MathSciNet  Google Scholar 

  27. Scott L R, Zhang S. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comput, 1990, 54: 483–493

    Article  MATH  MathSciNet  Google Scholar 

  28. Tiba D. Lectures on the Optimal Control of Elliptic Equations. Jyvaskyla: University of Jyvaskyla Press, 1995

    Google Scholar 

  29. Veeser A. Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J Numer Anal, 2001, 39: 146–167

    Article  MATH  MathSciNet  Google Scholar 

  30. Xiong C, Li Y. A posteriori error estimates for optimal distributed control governed by the evolution equations. Appl Numer Math, 2011, 61: 181–200

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfei Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Rui, H. & Zhou, Z. A posteriori error estimates for optimal control problems constrained by convection-diffusion equations. Front. Math. China 11, 55–75 (2016). https://doi.org/10.1007/s11464-015-0456-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-015-0456-0

Keywords

MSC

Navigation