Skip to main content
Log in

Holocene aeolian activities linked to Indian summer monsoon in the middle reaches of the Yarlung Zangbo River

  • Research Article
  • Published:
Journal of Geographical Sciences Aims and scope Submit manuscript

Abstract

Widespread aeolian deposits on the Tibetan Plateau (TP) have provided valuable palaeoclimatic information. However, the primary factors (e.g., climate factors, human activity, and vegetation cover) controlling aeolian deposition remain elusive. In this paper, we use a dataset that comprises new and published ages of Holocene aeolian sand and loess in the middle reaches of the Yarlung Zangbo River to identify the primary controlling factors and palaeoclimatic implications of aeolian deposition. Several intervals of enhanced aeolian accumulation centered at 8.5–7.8, 6.4–5.8, 4.5–4.0, 3.1–1.8, and 0.9 ka are identified, generally consistent with regional low rainfall events and weak Indian summer monsoon (ISM). This suggests that regional wetness, dominated by the ISM, may play a key role in modulating dust emissions and aeolian deposition on centennial timescales. Our results show that on centennial- to millennial-scales, ISM activity can be reconstructed by non-continuous aeolian deposits in the monsoon dominated TP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An Z, Colman S M, Zhou W et al., 2012. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Scientific Reports, 2: 619.

    Article  Google Scholar 

  • An Z, Kutzbach J E, Prell W L et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 411(6833): 62–66.

    Article  Google Scholar 

  • Berger A, Loutre M F, 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10(4): 297–317.

    Article  Google Scholar 

  • Bird B W, Polisar P J, Lei Y et al., 2014. A Tibetan lake sediment record of Holocene Indian summer monsoon variability. Earth and Planetary Science Letters, 399: 92–102.

    Article  Google Scholar 

  • Böhner J, 2006. General climatic controls and topoclimatic variations in Central and High Asia. Boreas, 35(2): 279–295.

    Article  Google Scholar 

  • Chen F, Welker F, Shen C et al., 2019. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature, 569(7756): 409–412.

    Article  Google Scholar 

  • Chen F, Wu D, Chen J et al., 2016. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies. Quaternary Science Reviews, 154: 111–129.

    Article  Google Scholar 

  • Chen F H, Dong G H, Zhang D J et al., 2015. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science, 347(6219): 248–250.

    Article  Google Scholar 

  • Chu G, Sun Q, Yang K et al., 2011. Evidence for decreasing South Asian summer monsoon in the past 160 years from varved sediment in Lake Xinluhai, Tibetan Plateau. Journal of Geophysical Research, 116(D02116): 1–11.

    Google Scholar 

  • Chen F, Chen J, Holmes J A et al., 2010. Moisture changes over the last millennium in arid Central Asia: A review, synthesis and comparison with monsoon region. Quaternary Science Reviews, 29(7): 1055–1068.

    Article  Google Scholar 

  • Conroy J L, Hudson A M, Overpeck J T et al., 2017. The primacy of multidecadal to centennial variability over late-Holocene forced change of the Asian monsoon on the southern Tibetan Plateau. Earth and Planetary Science Letters, 458: 337–348.

    Article  Google Scholar 

  • Doberschütz S, Frenzel P, Haberzettl T et al., 2014. Monsoonal forcing of Holocene paleoenvironmental change on the central Tibetan Plateau inferred using a sediment record from Lake Nam Co (Xizang, China). Journal of Paleolimnology, 51(2): 253–266.

    Article  Google Scholar 

  • Dong Z, Hu G, Qian G et al., 2017. High-altitude aeolian research on the Tibetan Plateau. Reviews of Geophysics, 55(4): 864–901.

    Article  Google Scholar 

  • Feng J L, Hu H P, Chen F, 2016. An eolian deposit-buried soil sequence in an alpine soil on the northern Tibetan Plateau: Implications for climate change and carbon sequestration. Geoderma, 266: 14–24.

    Article  Google Scholar 

  • Fleitmann D, Burns S J, Mudelsee M et al., 2003. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science, 300(5626): 1737–1739.

    Article  Google Scholar 

  • Gasse F, Fontes J C, Van Campo E et al., 1996. Holocene environmental changes in Bangong Co basin (Western Tibet). Part 4: Discussion and conclusions. Palaeogeography, Palaeoclimatology, Palaeoecology, 120(1/2): 79–92.

    Article  Google Scholar 

  • Gupta A K, Anderson D M, Overpeck J T, 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature, 421(6921): 354–357.

    Article  Google Scholar 

  • Hoffmann T, Lang A, Dikau R, 2008. Holocene river activity: Analysing 14C-dated fluvial and colluvial sediments from Germany. Quaternary Science Reviews, 27(21): 2031–2040.

    Article  Google Scholar 

  • Hong Y, Hong B, Lin Q H et al., 2003. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth and Planetary Science Letters, 211(3/4): 371–380.

    Article  Google Scholar 

  • Hou J, D’Andrea W J, Wang M et al., 2017. Influence of the Indian monsoon and the subtropical jet on climate change on the Tibetan Plateau since the late Pleistocene. Quaternary Science Reviews, 163: 84–94.

    Article  Google Scholar 

  • Hu H, Feng J, Chen F, 2018. Sedimentary records of a palaeo-lake in the middle Yarlung Tsangpo: Implications for terrace genesis and outburst flooding. Quaternary Science Reviews, 192: 135–148.

    Article  Google Scholar 

  • Hudson A M, Olsen J W, Quade J, 2014. Radiocarbon dating of interdune paleo-wetland deposits to constrain the age of Mid-to-Late Holocene microlithic artifacts from the Zhongba site, southwestern Qinghai-Tibet Plateau. Geoarchaeology, 29(1): 33–46.

    Article  Google Scholar 

  • Kaiser K, Lai Z, Schneider B et al., 2009. Stratigraphy and palaeoenvironmental implications of Pleistocene and Holocene aeolian sediments in the Lhasa area, southern Tibet (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3/4): 329–342.

    Article  Google Scholar 

  • Kramer A, Herzschuh U, Mischke S et al., 2010. Holocene treeline shifts and monsoon variability in the Hengduan Mountains (southeastern Tibetan Plateau), implications from palynological investigations. Palaeogeography, Palaeoclimatology, Palaeoecology, 286(1): 23–41.

    Article  Google Scholar 

  • Lai Z, Kaiser K, Brückner H, 2009. Luminescence-dated aeolian deposits of late Quaternary age in the southern Tibetan Plateau and their implications for landscape history. Quaternary Research, 72(3): 421–430.

    Article  Google Scholar 

  • Lehmkuhl F, Klinge M, Rees-Jones J et al., 2000. Late Quaternary aeolian sedimentation in central and south-eastern Tibet. Quaternary International, 68–71: 117–132.

    Article  Google Scholar 

  • Lehmkuhl F, Schulte P, Zhao H et al., 2014. Timing and spatial distribution of loess and loess-like sediments in the mountain areas of the northeastern Tibetan Plateau. Catena, 117: 23–33.

    Article  Google Scholar 

  • Li S, Dong G, Shen J et al., 1999. Formation mechanism and development pattern of aeolian sand landform in Yarlung Zangbo River valley. Science in China Series D: Earth Sciences, 42(3): 272–284.

    Article  Google Scholar 

  • Li S, Yang P, Dong Y et al., 2010. Desertification and Its Control in Tibet. Beijing: Science Press. (in Chinese)

    Google Scholar 

  • Li T, Ren X, Liao Y et al., 2020. Paleoenvironment analysis of the middle reaches of Yarlung Zangbo River and Changguogou site. Quaternary Sciences, 40(2): 547–555. (in Chinese)

    Google Scholar 

  • Li T, Wu Y, Du S et al., 2016. Geochemical characterization of a Holocene aeolian profile in the Zhongba area (southern Tibet, China) and its paleoclimatic implications. Aeolian Research, 20: 169–175.

    Article  Google Scholar 

  • Ling Z, Jin J, Wu D et al., 2019. Aeolian sediments and their paleoenvironmental implication in the Yarlung Zangbo catchment (southern Tibet, China) since MIS3. Acta Geographica Sinica, 74(11): 2385–2400. (in Chinese)

    Google Scholar 

  • Ling Z, Yang S, Wang X et al., 2020. Spatial-temporal differentiation of eolian sediments in the Yarlung Tsangpo catchment, Tibetan Plateau, and response to global climate change since the Last Glaciation. Geomorphology, 357: 107104.

    Article  Google Scholar 

  • Liu X, Dong H, Yang X et al., 2009. Late Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy records from the northern Qinghai-Tibetan Plateau. Earth and Planetary Science Letters, 280(1): 276–284.

    Article  Google Scholar 

  • Lu H, Zhao C, Mason J et al., 2011. Holocene climatic changes revealed by aeolian deposits from the Qinghai Lake area (northeastern Qinghai-Tibetan Plateau) and possible forcing mechanisms. Holocene, 21(2): 297–304.

    Article  Google Scholar 

  • Ma Q, Zhu L, Lü X et al., 2014. Pollen-inferred Holocene vegetation and climate histories in Taro Co, southwestern Tibetan Plateau. Chinese Science Bulletin, 59(31): 4101–4114.

    Article  Google Scholar 

  • Ma Q, Zhu L, Lü X et al., 2019. Late glacial and Holocene vegetation and climate variations at Lake Tangra Yumco, central Tibetan Plateau. Global and Planetary Change, 174: 16–25.

    Article  Google Scholar 

  • Meyer M C, Aldenderfer M, Wang Z et al., 2017. Permanent human occupation of the central Tibetan Plateau in the early Holocene. Science, 355(6320): 64–67.

    Article  Google Scholar 

  • Molnar P, Boos W R, Battisti D S, 2010. Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annual Review of Earth and Planetary Sciences, 38(1): 77–102.

    Article  Google Scholar 

  • Murray A S, Wintle A G, 2000. Application of the single-aliquot regenerative-dose protocol to the 375°C quartz TL signal. Radiation Measurements, 32(5): 579–583.

    Article  Google Scholar 

  • Pan M, Wu Y, Zheng Y et al., 2014. Holocene aeolian activity in the Dinggye area (southern Tibet, China). Aeolian Research, 12: 19–27.

    Article  Google Scholar 

  • Prescott J R, Hutton J T, 1994. Cosmic ray contribution to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiation Measurements, 23(2/3): 497–500.

    Article  Google Scholar 

  • Pye K, 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews, 14(7/8): 653–667.

    Article  Google Scholar 

  • Qiang M, Jin Y, Liu X et al., 2016. Late Pleistocene and Holocene aeolian sedimentation in Gonghe Basin, northeastern Qinghai-Tibetan Plateau: Variability, processes, and climatic implications. Quaternary Science Reviews, 132: 57–73.

    Article  Google Scholar 

  • Qiang M, Liu Y, Jin Y et al., 2014. Holocene record of eolian activity from Genggahai Lake, northeastern Qinghai-Tibetan Plateau, China. Geophysical Research Letters, 41(2): 589–595.

    Article  Google Scholar 

  • Reimer P J, Bard E, Bayliss A et al., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55(4): 1869–1887.

    Article  Google Scholar 

  • Seki O, Meyers P A, Yamamoto S et al., 2011. Plant-wax hydrogen isotopic evidence for postglacial variations in delivery of precipitation in the monsoon domain of China. Geology, 39(9): 875–878.

    Article  Google Scholar 

  • Shen W, Li H, Sun M et al., 2012. Dynamics of aeolian sandy land in the Yarlung Zangbo River basin of Tibet, China from 1975 to 2008. Global and Planetary Change, 86/87: 37–44.

    Article  Google Scholar 

  • Shi X, Kirby E, Furlong K P et al., 2017. Rapid and punctuated Late Holocene recession of Siling Co, central Tibet. Quaternary Science Reviews, 172: 15–31.

    Article  Google Scholar 

  • Singhvi A, Bluszcz A, Bateman M et al., 2001. Luminescence dating of loess-palaeosol sequences and coversands: Methodological aspects and palaeoclimatic implications. Earth-Science Reviews, 54(1–3): 193–211.

    Article  Google Scholar 

  • Stauch G, 2015. Geomorphological and palaeoclimate dynamics recorded by the formation of aeolian archives on the Tibetan Plateau. Earth-Science Reviews, 150: 393–408.

    Article  Google Scholar 

  • Stauch G, 2016. Multi-decadal periods of enhanced aeolian activity on the north-eastern Tibet Plateau during the last 2 ka. Quaternary Science Reviews, 149: 91–101.

    Article  Google Scholar 

  • Stauch G, Ijmker J, Pötsch S et al., 2012. Aeolian sediments on the north-eastern Tibetan Plateau. Quaternary Science Reviews, 57: 71–84.

    Article  Google Scholar 

  • Stauch G, Lai Z, Lehmkuhl F et al., 2018. Environmental changes during the late Pleistocene and the Holocene in the Gonghe Basin, north-eastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 509: 144–155.

    Article  Google Scholar 

  • Sun J, Li S, Muhs D R et al., 2007. Loess sedimentation in Tibet: Provenance, processes, and link with Quaternary glaciations. Quaternary Science Reviews, 26(17/18): 2265–2280.

    Article  Google Scholar 

  • Thompson L G, Yao T, Mosleythompson E et al., 2000. A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science, 289(5486): 1916–1919.

    Article  Google Scholar 

  • Tian L, Yao T, MacClune K et al., 2007. Stable isotopic variations in west China: A consideration of moisture sources. Journal of Geophysical Research: Atmospheres, 112(D10112): 1–12.

    Google Scholar 

  • Tian L D, Masson-Delmotte V, Stievenard M et al., 2001. Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. Journal of Geophysical Research Atmospheres, 106(D22): 28081–28088.

    Article  Google Scholar 

  • Wang Y, Cheng H, Edwards R L et al., 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science, 308(5723): 854–857.

    Article  Google Scholar 

  • Wintle A G, Murray A S, 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements, 41(4): 369–391.

    Article  Google Scholar 

  • Xie M, Zhu L, Peng P et al., 2009. Ostracod assemblages and their environmental significance from the lake core of the Nam Co on the Tibetan Plateau 8.4 kaBP. Journal of Geographical Sciences, 19(4): 387–402.

    Article  Google Scholar 

  • Yao T, Masson-Delmotte V, Gao J et al., 2013. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Reviews of Geophysics, 51(4): 525–548.

    Article  Google Scholar 

  • Zhang J, Feng J L, Hu G et al., 2015. Holocene proglacial loess in the Ranwu valley, southeastern Tibet, and its paleoclimatic implications. Quaternary International, 372: 9–22.

    Article  Google Scholar 

  • Zhang J F, Xu B, Turner F et al., 2017. Long-term glacier melt fluctuations over the past 2500 yr in monsoonal High Asia revealed by radiocarbon-dated lacustrine pollen concentrates. Geology, 45(4): 359–362.

    Article  Google Scholar 

  • Zhang X, Ha B B, Wang S et al., 2018. The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago. Science, 362(6418): 1049–1051.

    Article  Google Scholar 

  • Zhao Y, Yu Z, Zhao W, 2011. Holocene vegetation and climate histories in the eastern Tibetan Plateau: Controls by insolation-driven temperature or monsoon-derived precipitation changes? Quaternary Science Reviews, 30(9): 1173–1184.

    Article  Google Scholar 

  • Zheng Y, 2009. The response of Holocene aeolian activities to climate change in the typical area of Qinghai-Tibet Plateau: Take the broad valley area in the middle reaches of the Yarlung Zangbo River in south Tibet and the Gonghe basin in Qinghai as examples [D]. Beijing: Beijing Capital Normal University. (in Chinese)

    Google Scholar 

  • Zheng Y, Wu Y, Li S et al., 2009. Grain-size characteristics of sediments formed since 8600 yr BP in middle reaches of Yarlung Zangbo River in Tibet and their paleoenvironmental significance. Chinese Geographical Science, 19(2): 113–119.

    Article  Google Scholar 

  • Zhu L, Li Y, Li B et al., 2002. The ostracod assemblages and their environmental significance in the Chen Co area, southern Tibet in recent 1400 years. Journal of Geographical Sciences, 12(4): 451–459.

    Article  Google Scholar 

  • Zhu L, Lü X, Wang J et al., 2015. Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM. Scientific Reports, 5: 13318.

    Article  Google Scholar 

  • Zhu L, Wu Y, Wang J et al., 2008. Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau, China. The Holocene, 18(5): 831–839.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jifeng Zhang.

Additional information

Foundation: National Natural Science Foundation of China, No.41601191, No.41871070, No.41877460; National Basic Research Program of China, No. 2013CB956001; Special Researcher Project of Henan Province

Author: Li Tuoyu (1985–), Associate Professor, specialized in environmental archaeology and aeolian research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Zhang, J., Wu, Y. et al. Holocene aeolian activities linked to Indian summer monsoon in the middle reaches of the Yarlung Zangbo River. J. Geogr. Sci. 30, 2002–2014 (2020). https://doi.org/10.1007/s11442-020-1824-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11442-020-1824-6

Keywords

Navigation