Skip to main content
Log in

A review of mass flux monitoring and estimation methods for biogeochemical interface processes in watersheds

  • Published:
Journal of Geographical Sciences Aims and scope Submit manuscript

Abstract

The magnitude of mass flux is closely associated with biogeochemical watershed processes, which can generate a considerable amount of pertinent information. Moreover, both the accuracy and precision of mass flux estimation results directly affects the perception of the ecological environmental status, which in turn affects both the formulation and implementation of river basin management planning. In practical applications, the true value of flux is unknown and can only be estimated. Flux results obtained using different monitoring and estimation methods also differ significantly. However, in existing studies on mass flux associated with biogeochemical watershed interfaces, the application of monitoring and estimation methods lacks uniform criteria or references. Accordingly, this study summarizes and deconstructs results from recent studies on biogeochemical watershed interface processes and compares the advantages, disadvantages and applicability of the monitoring and estimation methods used by these studies. This particular study is intended to be used as a reference for the selection of flux calculation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguillaume L, Izquieta-Rojano S, García-Gómez H et al.. 2017. Dry deposition and canopy uptake in Mediterranean holm-oak forests estimated with a canopy budget model: A focus on N estimations. Atmospheric Environment, 152: 191–200.

    Article  Google Scholar 

  • Allan I J, Vrana B, Greenwood R et al.. 2006. Strategic monitoring for the European water framework directive. Trends in Analytical Chemistry, 25(7): 704–715.

    Article  Google Scholar 

  • Andersen H V, Hovmand M F. 1999. Review of dry deposition measurements of ammonia and nitric acid to forest. Forest Ecology & Management, 114(1): 5–18.

    Article  Google Scholar 

  • Aulenbach B T, Hooper R P. 2006. The composite method: An improved method for stream-water solute load estimation. Hydrological Processes, 20(14): 3029–3047.

    Article  Google Scholar 

  • Baker A R, Lesworth T, Adams C et al.. 2010. Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on large-scale field sampling: Fixed nitrogen and dry deposition of phosphorus. Global Biogeochemical Cycles, 24(3): 1–16.

    Article  Google Scholar 

  • Baldassarre G D, Montanari A. 2009. Uncertainty in river discharge observations: A quantitative analysis. Hydrology and Earth System Sciences, 13(6): 913–921.

    Article  Google Scholar 

  • Battin T J, Besemer K, Bengtsson M M et al.. 2016. The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology, 14(4): 251–263.

    Article  Google Scholar 

  • Baumgartner N, Parkin G W, Elrick D E. 1994. Soil water content and potential measured by hollow time domain reflectometry probe. Soil Science Society of America Journal, 58(2): 315–318.

    Article  Google Scholar 

  • Beven K. 1989. Interflow: Unsaturated Flow in Hydrologic Modeling. Dordrecht: Springer, 275: 191–219.

    Google Scholar 

  • Bhaduri B, Harbor J, Engel B et al.. 2000. Assessing watershed-scale, long-term hydrologic impacts of land-use change using a GIS-NPS model. Environmental Management, 26(6): 643–658.

    Article  Google Scholar 

  • Boughton W C. 1989. A review of the USDA SCS curve number method. Soil Research, 27(3): 511.

    Article  Google Scholar 

  • Böttcher G, Brumsack H J, Heinrichs H et al.. 1997. A new high-pressure squeezing technique for pore fluid extraction from terrestrial soils. Water Air & Soil Pollution, 94(3/4): 289–296.

    Article  Google Scholar 

  • Brandi-Dohrn F M, Hess M, Selker J S et al.. 1996. Field evaluation of passive capillary samplers. Soil Science Society of America Journal, 60(6): 1705–1713.

    Article  Google Scholar 

  • Brauer N, O’Geen A, Dahlgren R A. 2009. Temporal variability in water quality of agricultural tailwaters: Implications for water quality monitoring. Agricultural Water Management, 96(6): 1001–1009.

    Article  Google Scholar 

  • Cao D W. 2015. The pollution load flux estimation of Huanxiang River basin based on ArcGIS and MikeBasin model. Water Sciences and Engineering Technology, (1): 64–67. (in Chinese)

    Google Scholar 

  • Chen N W, Hong H S, Xiao J et al.. 2006. Dry deposition of atmospheric nitrogen to Jiulong River watershed in southeast China. Acta Ecologica Sinica, 26(8): 2602–2607.

    Google Scholar 

  • Chen Q, Gou S, Qin D Y et al.. 2010. An efficient method for automatic calibration of SWAT model parameters. Journal of Hydraulic Engineering, 39(1): 113–119. (in Chinese)

    Google Scholar 

  • Chen W L, Gao Y, Lin Y M et al.. 2014. Nitrogen leaching and associated environmental health effect in sloping cropland of purple soil. Environmental Science, 35(6): 2129–2138. (in Chinese)

    Google Scholar 

  • Coppola A I, Wiedemeier D B, Galy V et al.. 2018. Global-scale evidence for the refractory nature of riverine black carbon. Nature Geoscience, 11(8): 584–588.

    Article  Google Scholar 

  • Cowan J L W, Boynton W R. 1996. Sediment-water oxygen and nutrient exchanges along the longitudinal axis of Chesapeake Bay: Seasonal patterns, controlling factors and ecological significance. Estuaries, 19(3): 562–580.

    Article  Google Scholar 

  • Coynel A, Schäfer J, Hurtrez J-E et al.. 2004. Sampling frequency and accuracy of SPM flux estimates in two contrasted drainage basins. Science of the Total Environment, 330(1–3): 233–247.

    Article  Google Scholar 

  • de Vries W, Wieggers H J, Brus D J. 2010. Impacts of sampling design and estimation methods on nutrient leaching of intensively monitored forest plots in the Netherlands. Journal of Environmental Monitoring, 12(8): 1515–1523.

    Article  Google Scholar 

  • Del Vecchio J, Lang K A, Robins C R et al.. 2018. Storage and weathering of landslide debris in the eastern San Gabriel Mountains, California, USA: Implications for mountain solute flux. Earth Surface Processes and Landforms, 43(13): 2724–2737.

    Article  Google Scholar 

  • Demetriou C, Punthakey J F. 1998. Evaluating sustainable groundwater management options using the MIKE SHE integrated hydrogeological modelling package. Environmental Modelling & Software, 14(2/3): 129–140.

    Article  Google Scholar 

  • Dentener F, Drevet J, Lamarque J F et al.. 2006. Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochemical Cycles, 20(4): 1–21.

    Article  Google Scholar 

  • Ding X, Shen Z, Hong Q et al.. 2010. Development and test of the export coefficient model in the upper reach of the Yangtze River. Journal of Hydrology, 383(3/4): 233–244.

    Article  Google Scholar 

  • Duan S, Powell R T, Bianchi T S. 2014. High frequency measurement of nitrate concentration in the Lower Mississippi River, USA. Journal of Hydrology, 519: 376–386.

    Article  Google Scholar 

  • Eng A, Harner T, Pozo K. 2013. A prototype passive air sampler for measuring dry deposition of polycyclic aromatic hydrocarbons. Environmental Science & Technology Letters, 1(1): 77–81.

    Article  Google Scholar 

  • Fan J L, Hu Z Y, Wang T J et al.. 2009. Dynamics of dry deposition velocities of atmospheric nitrogen compounds in a broadleaf forestland. China Environmental Science, 29(6): 574–577. (in Chinese)

    Google Scholar 

  • Fan J L, Hu Z Y, Zhuang S Y et al.. 2007. Observation of atmospheric nitrogen deposition into forestland. China Environmental Science, 27(1): 7–9. (in Chinese)

    Google Scholar 

  • Fenn M E, Poth M A. 2004. Monitoring nitrogen deposition in throughfall using ion exchange resin columns: A field test in the San Bernardino Mountains. Journal of Environmental Quality, 33(6): 2007–2014.

    Article  Google Scholar 

  • Ferguson I R. 1986. River loads underestimated by rating curves. Water Resources Research, 22(1): 74–76.

    Article  Google Scholar 

  • Gao L, Chen J Y, Zhu A P et al.. 2015. Calculation of masses flux in a transboundary catchment based on SCS model: A case study in Shima River catchment, Dongguan City. China Environmental Science, 35: 925–933. (in Chinese)

    Google Scholar 

  • Gao Q Z, Shen C D. 1998. Study on river carbon flux and land erosion. Advances in Earth Science, 13(4): 369–375. (in Chinese)

    Google Scholar 

  • Gao Q Z, Shen C D, Sun Y M et al.. 2001. A preliminary study on the organic carbon weathering fluxes in Beijiang River Drainage. Environmental Science, 22(2): 12–18. (in Chinese)

    Google Scholar 

  • Gao Y, He N, Yu G et al.. 2014. Long-term effects of different land use types on C, N, and P stoichiometry and storage in subtropical ecosystems: A case study in China. Ecological Engineering, 67: 171–181.

    Article  Google Scholar 

  • Gao Y, Jia Y L, Yu G R et al.. 2019. Anthropogenic reactive nitrogen deposition and associated nutrient limitation effect on gross primary productivity in inland water of China. Journal of Cleaner Production, 208: 530–540.

    Article  Google Scholar 

  • Gao Y, Yu G. 2018. Biogeochemical cycle and its hydrological coupling processes and associative controlling mechanism in a watershed. Acta Geographica Sinica, 73(7): 1381–1393. (in Chinese)

    Google Scholar 

  • Gao Y, Zhou F, Ciais P et al.. 2020. Human activities aggravate nitrogen deposition pollution to inland water over China. National Science Review, 7: 430–440.

    Article  Google Scholar 

  • Geng R Z, Wang X Y, Jiao S et al.. 2013. Application of improved export coefficient model in estimating non-point source nutrient load from Miyun reservoir watersheds. Acta Scientiae Circumstantiae, 33(5): 1484–1492. (in Chinese)

    Google Scholar 

  • Giesler R, Lundström U S, Grip H L. 2010. Comparison of soil solution chemistry assessment using zero‐tension lysimeters or centrifugation. European Journal of Soil Science, 47(3): 395–405.

    Article  Google Scholar 

  • Gou J J, Miao C Y, Duan Q Y et al.. 2020. Sensitivity analysis-based automatic parameter calibration of the variable infiltration capacity (VIC) model for streamflow simulations over China. Water Resources Research, doi: 10.1029/2019WR025968.

    Google Scholar 

  • Grizzetti B, Bouraoui F, Granlund K et al.. 2003. Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model. Ecological Modelling, 169(1): 25–38.

    Article  Google Scholar 

  • Grossmann J, Udluft P. 2006. The extraction of soil water by the suction-cup method: A review. European Journal of Soil Science, 42(1): 83–93.

    Article  Google Scholar 

  • Gu W C. 2000. Principle and Application of Seepage Calculation. Beijing: China Building Materials Press. (in Chinese)

    Google Scholar 

  • Gui F, Yu G, Wang L Z. 2014. Preliminary study on flux modeling of exogenous nitrogen and phosphorus into the upper reaches of Taihu Lake Basin. Resources and Environment in the Yangtze Basin, 23(9): 1265–1274. (in Chinese)

    Google Scholar 

  • Gundersen P, Emmett B A, Kjønaas O J et al.. 1998. Impact of nitrogen deposition on nitrogen cycling in forests: A synthesis of NITREX data. Forest Ecology & Management, 101(1–3): 37–55.

    Article  Google Scholar 

  • Hao C L, Deng Y X, Wang Y H et al.. 2012. Study on the selection and error analysis of riverine pollutant flux estimation methods. Acta Scientiae Circumstantiae, 32(7): 1670–1676. (in Chinese)

    Google Scholar 

  • Hao Z, Gao Y, Yang T et al.. 2017. Atmospheric wet deposition of nitrogen in a subtropical watershed in China: Characteristics of and impacts on surface water quality. Environmental Science and Pollution Research International, 24(9): 8489–8503.

    Article  Google Scholar 

  • Hayashi K, Matsuda K, Ono K et al.. 2013. Amelioration of the reactive nitrogen flux calculation by a day/night separation in weekly mean air concentration measurements. Atmospheric Environment, 79: 462–471.

    Article  Google Scholar 

  • Hicks B B, Baldocchi D D, Meyers T P et al.. 1987. A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water Air & Soil Pollution, 36(3/4): 311–330.

    Article  Google Scholar 

  • Hicks B B, Wesely M L, Coulter R L et al.. 1986. An experimental study of sulfur and NO x fluxes over grassland. Boundary–Layer Meteorology, 34(12): 103–121.

    Article  Google Scholar 

  • Hirsch R M, Moyer D L, Archfield S A. 2010. Weighted regressions on time, discharge, and season (WRTDS), with an application to Chesapeake Bay River inputs. Journal of the American Water Resources Association, 46(5): 857–880.

    Article  Google Scholar 

  • Holland E A, Braswell B H, Sulzman J et al.. 2005. Nitrogen deposition onto the United States and western Europe: Synthesis of observations and models. Ecological Applications, 15(1): 38–57.

    Article  Google Scholar 

  • Horvath L, Nagy Z, Weidinger T. 1998. Estimation of dry deposition velocities of nitric oxide, sulfur dioxide, and ozone by the gradient method above short vegetation during the tract campaign: The log-linear range, and extension to strong stability. Atmospheric Environment, 32(7): 1317–1322.

    Article  Google Scholar 

  • House W A, Denison F H. 2002. Exchange of inorganic phosphate between river waters and bed-sediments. Environmental Science & Technology, 36(20): 4295–4301.

    Article  Google Scholar 

  • Huang J, Liu Y, Holsen T M. 2011. Comparison between knife-edge and frisbee-shaped surrogate surfaces for making dry deposition measurements: Wind tunnel experiments and computational fluid dynamics (CFD) modeling. Atmospheric Environment, 45(25): 4213–4219.

    Article  Google Scholar 

  • Huettel M, Berg P, Kostka J E. 2014. Benthic exchange and biogeochemical cycling in permeable sediments. Annual Review of Marine Science, 6(1): 23.

    Article  Google Scholar 

  • Jan S. 2003. The European carbon budget: A gap. Science, 302(5651): 1681-1681.

    Google Scholar 

  • Johnes P J. 1996. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: The export coefficient modelling approach. Journal of Hydrology, 183(3/4): 323–349.

    Article  Google Scholar 

  • Johnes P J. 2007. Uncertainties in annual riverine phosphorus load estimation: Impact of load estimation methodology, sampling frequency, baseflow index and catchment population density. Journal of Hydrology, 332(1/2): 241–258.

    Article  Google Scholar 

  • Johnsson H, Bergstrom L, Jansson P et al.. 1987. Simulated nitrogen dynamics and losses in a layered agricultural soil. Agriculture Ecosystems & Environment, 18(4): 333–356.

    Article  Google Scholar 

  • Kettner A J, Syvitski J P M. 2008. HydroTrend v.3.0: A climate-driven hydrological transport model that simulates discharge and sediment load leaving a river system. Computers & Geosciences, 34(10): 1170–1183.

    Article  Google Scholar 

  • Kienzler P M, Naef F. 2008. Temporal variability of subsurface stormflow formation. Hydrology & Earth System Sciences Discussions, 4(4): 257–265.

    Article  Google Scholar 

  • Kim M G, Hong Y M, Kang M H et al.. 2001. Estimation of dry deposition by using a filter pack method at Chunchon, Korea. Water Air & Soil Pollution, 130(1–4): 565–570.

    Article  Google Scholar 

  • Klopatek J M, Barry M J, Johnson D W. 2006. Potential canopy interception of nitrogen in the Pacific Northwest, USA. Forest Ecology & Management, 234(1): 344–354.

    Article  Google Scholar 

  • Kong D X, Miao C Y, Borthwick A G L et al.. 2015. Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011. Journal of Hydrology, 520: 157–167.

    Article  Google Scholar 

  • Kovács J, Korponai J, Kovács I S et al.. 2012. Introducing sampling frequency estimation using variograms in water research with the example of nutrient loads in the Kis-Balaton Water Protection System (W Hungary). Ecological Engineering, 42: 237–243.

    Article  Google Scholar 

  • Kronvang B, Bruhn A. 1996. Choice of sampling strategy and estimation method for calculating nitrogen and phosphorus transport in small lowland streams. Hydrological Processes, 10(11): 1483–1501.

    Article  Google Scholar 

  • Lai X M, Liao K H, Feng H H et al.. 2016. Responses of soil water percolation to dynamic interactions among rainfall, antecedent moisture and season in a forest site. Journal of Hydrology, 540: 565–573.

    Article  Google Scholar 

  • Lambrecht N, Katsev S, Wittkop C et al.. 2020. Biogeochemical and physical controls on methane fluxes from two ferruginous meromictic lakes. Geobiology, 18(1): 54–69.

    Article  Google Scholar 

  • Landis M S, Keeler G J. 2002. Atmospheric mercury deposition to Lake Michigan during the Lake Michigan mass balance study. Environmental Science & Technology, 36(21): 4518–4524.

    Article  Google Scholar 

  • Lawrence G B, David M B. 1996. Chemical evaluation of soil-solution in acid forest soils. Soil Science, 161(5): 298–313.

    Article  Google Scholar 

  • Lei Z D, Yang S X, Xie S C. 1988. Soil Water Dynamics. Beijing: Tsinghua University Press. (in Chinese)

    Google Scholar 

  • Li A, Li Y, Cheng W et al.. 2016. Caculation of agricultural non-point source of nitrogen and phosphorus loading from Tangxun lake watershed into the lake. Environmental Science & Technology, (10): 113–117. (in Chinese)

    Google Scholar 

  • Li C, Farahbakhshazad N, Jaynes D B et al.. 2006. Modeling nitrate leaching with a biogeochemical model modified based on observations in a row-crop field in Iowa. Ecological Modelling, 196(1/2): 116–130.

    Article  Google Scholar 

  • Li H J, Jargon A, Cheng Y et al.. 2012. Estimating sediment flux in the Xinjiang River based on the load duration curve method. China Rural Water and Hydropower, (11): 13–15. (in Chinese)

    Google Scholar 

  • Li J Z, Pei T P. 1999. Simulation and model of interflow on hillslope of forest catchment. Scientia Silvae Sinicae, 35(4): 2–8. (in Chinese)

    Google Scholar 

  • Li N, Sheng H, He C J et al.. 2012. Estimation of pollutant flux in Baoxiang River based on LOADEST. Journal of Basic Science and Engineering, 20(3): 355–366. (in Chinese)

    Google Scholar 

  • Li Y, Li H P. 2008. Influence of landscape characteristics on non-point source pollutant output in Taihu upper- river basin. Environmental Science, 29(5): 1319–1324. (in Chinese)

    Article  Google Scholar 

  • Li Y H, Gregory S. 1974. Diffusion of ions in sea water and in deep-sea sediments. Geochimica et Cosmochimica Acta, 38(5): 703–714.

    Article  Google Scholar 

  • Liao Y S, Zhuo M N, Li D Q et al.. 2013. Estimation of urban non-point source pollution loading and its factor analysis in the Pearl River Delta. Environmental Science, 34(8): 3019–3024. (in Chinese)

    Google Scholar 

  • Liu H-H, Bao L-J, Zeng E Y. 2014. Recent advances in the field measurement of the diffusion flux of hydrophobic organic chemicals at the sediment-water interface. Trends in Analytical Chemistry, 54: 56–64.

    Article  Google Scholar 

  • Liu L. 2018. Study on atmospheric sedimentation flux in Taihu Lake of Jiangsu Province. China Resources Comprehensive Utilization, 36(5): 175–176, 179. (in Chinese)

    Google Scholar 

  • Liu S, Reiners W A, Keller M et al.. 2000. Simulation of nitrous oxide and nitric oxide emissions from tropical primary forests in the Costa Rican Atlantic Zone. Environmental Modelling & Software, 15(8): 727–743.

    Article  Google Scholar 

  • Liu W H, Yang C L, Fu Q et al.. 2011. Study on the flux of nutrients transporting into Dianchi Lake through Panlongjiang River. Environmental Protection and Technology, 17(3): 33–36. (in Chinese)

    Google Scholar 

  • Lovett G M. 1994. Atmospheric deposition of nutrients and pollutants in North America: An ecological perspective. Ecological Applications, 4(4): 630–650.

    Article  Google Scholar 

  • Lu Y, Gao Y, Jia J J et al.. 2019. C and N transport flux and associated change of water quality parameters from multiscale subtropical watershed in Poyang Lake areas. Environmental Science, 40(6): 2696–2704. (in Chinese)

    Google Scholar 

  • Ludwig W, Probst J-L, Kempe S. 1996. Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles, 10(1): 23–41.

    Article  Google Scholar 

  • Lyman S N, Gustin M S, Prestbo E M et al.. 2007. Estimation of dry deposition of atmospheric mercury in Nevada by direct and indirect methods. Environmental Science & Technology, 41(6): 1970–1976.

    Article  Google Scholar 

  • Mao J T, Hu X Z. 1996. Measurement of dry deposition velocity of some pollutants in Nanchang Province of China. Meteorological Science and Technology, (2): 36–42. (in Chinese)

    Google Scholar 

  • Marques R, Ranger J, Gelhaye D et al.. 2010. Comparison of chemical composition of soil solutions collected by zero-tension plate lysimeters with those from ceramic-cup lysimeters in a forest soil. European Journal of Soil Science, 47(3): 407–417.

    Article  Google Scholar 

  • Masese F O, Salcedo-Borda J S, Gettel G M et al.. 2016. Influence of catchment land use and seasonality on dissolved organic matter composition and ecosystem metabolism in headwater streams of a Kenyan river. Biogeochemistry, 132(1/2): 1–22.

    Google Scholar 

  • Miao C Y, Kong D X, Wu J W et al.. 2016. Functional degradation of the water–sediment regulation scheme in the lower Yellow River: Spatial and temporal analyses. Science of the Total Environment, 551/552: 16–22.

    Article  Google Scholar 

  • Monteith D T, Stoddard J L, Evans C D et al.. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450(7169): 537–540.

    Article  Google Scholar 

  • Moutonnet P, Fardeau J C. 1997. Inorganic nitrogen in soil solution collected with tensionic samplers. Soil Science Society of America, 61(3): 822.

    Article  Google Scholar 

  • Moutonnet P, Pagenel J, Fardeau J. 1993. Simultaneous field measurement of nitrate-nitrogen and matric pressure head. Soil Science Society of America Journal, 57(6): 1458–1462.

    Article  Google Scholar 

  • Mu D, Yuan D, Feng H et al.. 2017. Nutrient fluxes across sediment-water interface in Bohai Bay Coastal Zone, China. Marine Pollution Bulletin, 114(2): 705–714.

    Article  Google Scholar 

  • Ning L, Zhan C, Luo Y et al.. 2019. A review of fully coupled atmosphere-hydrology simulations. Journal of Geographical Sciences, 29(3): 465–479.

    Article  Google Scholar 

  • Nishino S, Kawaguchi Y, Fujiwara A et al.. 2018. Biogeochemical anatomy of a cyclonic warm‐core eddy in the Arctic Ocean. Geophysical Research Letters, 45(20): 11, 284–11,292.

    Article  Google Scholar 

  • Niu F X, Xiao S B, Wang Y C et al.. 2013. Estimation of releasing fluxes of sediment phosphorous in the Three Gorges Reservoir during late autumn and early winter. Environmental Science, 34(4): 1308–1314. (in Chinese)

    Google Scholar 

  • Ottley C J, Harrison R M. 1991. The atmospheric input flux of trace metals to the North Sea: A review and recommendations for research. Science of the Total Environment, 100(1): 301–318.

    Article  Google Scholar 

  • Pang H, Zongxing L I, Theakstone W H. 2012. Changes of the hydrological cycle in two typical Chinese monsoonal temperate glacier basins:A response to global warming? Journal of Geographical Sciences, 22(5): 771–780.

    Article  Google Scholar 

  • Park Y, Engel B. 2014. Use of pollutant load regression models with various sampling frequencies for annual load estimation. Water, 6(6): 1685–1697.

    Article  Google Scholar 

  • Park Y, Engel B, Frankenberger J et al.. 2015. A web-based tool to estimate pollutant loading using LOADEST. Water, 7(12): 4858–4868.

    Article  Google Scholar 

  • Pellerin B A, Bergamaschi B A, Gilliom R J et al.. 2014. Mississippi River nitrate loads from high frequency sensor measurements and regression-based load estimation. Environmental Science & Technology, 48(21): 12612–12619.

    Article  Google Scholar 

  • Pitkänen H, Lehtoranta J, Räike A. 2001. Internal nutrient fluxes counteract decreases in external load: The case of the estuarial eastern gulf of Finland, Baltic Sea. AMBIO: A Journal of the Human Environment, 30(4): 195–201.

    Article  Google Scholar 

  • Pratt G C, Orr E J, Bock D C et al.. 1996. Estimation of dry deposition of inorganics using filter pack data and inferred deposition velocity. Environmental Science & Technology, 30(7): 2168–2177.

    Article  Google Scholar 

  • Rabalais N N. 2002. Nitrogen in Aquatic Ecosystems. AMBIO: A Journal of the Human Environment, 31(2): 102–112.

    Article  Google Scholar 

  • Rekolainen S, Posch M, Kämäri J et al.. 1991. Evaluation of the accuracy and precision of annual phosphorus load estimates from two agricultural basins in Finland. Journal of Hydrology, 128(1–4): 237–255.

    Article  Google Scholar 

  • Richards R P, Holloway J. 1987. Monte Carlo studies of sampling strategies for estimating tributary loads. Water Resources Research, 23(10): 1939–1948.

    Article  Google Scholar 

  • Rolfhus K R, Sakamoto H E, Cleckner L B et al.. 2003. Distribution and fluxes of total and methylmercury in Lake Superior. Environmental Science & Technology, 37(5): 865.

    Article  Google Scholar 

  • Rydin E. 2000. Potentially mobile phosphorus in Lake Erken sediment. Water Research, 34(7): 2037–2042.

    Article  Google Scholar 

  • Santos I R, Eyre B D, Huettel M. 2012. The driving forces of porewater and groundwater flow in permeable coastal sediments: A review. Estuarine Coastal & Shelf Science, 98(1): 1–15.

    Article  Google Scholar 

  • Schlesinger W H, Melack J M. 1981. Transport of organic carbon in the world’s rivers. Tellus, 33(2): 172–187.

    Article  Google Scholar 

  • Sheng H, Gao J H, Liu Q et al.. 2018. Variation in water discharge and sediment load in the Yalu River catchment induced by human activities and climate changes. Marine Geology & Quaternary Geology, (1): 52–61. (in Chinese)

    Google Scholar 

  • Sheng W P, Yu G R, Fang H J et al.. 2010. Observation methods for atmospheric nitrogen deposition. Journal of Ecology, 29(8): 1671–1678. (in Chinese)

    Google Scholar 

  • Sheng W P, Yu G R, Jiang C et al.. 2013. Monitoring nitrogen deposition in typical forest ecosystems along a large transect in China. Environmental Monitoring & Assessment, 185(1): 833–844.

    Article  Google Scholar 

  • Šimůnek J, van Genuchten M T, Šejna M. 2016. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone Journal, 15(7): 1–25.

    Article  Google Scholar 

  • Singh J, Knapp H V, Arnold J G et al.. 2005. Hydrological modeling of the Iroquois River watershed using HSPF and SWAT. Journal of the American Water Resources Association, 41(2): 343–360.

    Article  Google Scholar 

  • Sloan P G, Moore I D. 1984. Modeling subsurface stormflow on steeply sloping forested watersheds. Water Resources Research, 20(12): 1815–1822.

    Article  Google Scholar 

  • Son K, Lin L, Band L et al.. 2019. Modelling the interaction of climate, forest ecosystem, and hydrology to estimate catchment dissolved organic carbon export. Hydrological Processes, 33(10): 1448–1464.

    Article  Google Scholar 

  • Spencer R G M, Aiken G R, Dornblaser M M et al.. 2013. Chromophoric dissolved organic matter export from U.S. rivers. Geophysical Research Letters, 40(8): 1575–1579.

    Article  Google Scholar 

  • Stenback G A, Crumpton W G, Schilling K E et al.. 2011. Rating curve estimation of nutrient loads in Iowa rivers. Journal of Hydrology, 396(1/2): 158–169.

    Article  Google Scholar 

  • Strobl R O, Robillard P D. 2008. Network design for water quality monitoring of surface freshwaters: A review. Journal of Environmental Management, 87(4): 639–648.

    Article  Google Scholar 

  • Su L, Miao C Y, Duan Q Y et al.. 2019. Multiple-wavelet coherence of world’s large rivers with meteorological factors and ocean signals. Journal of Geophysical Research: Atmospheres, doi: 10.1029/2018JD029842.

    Google Scholar 

  • Sun H G, Han J T, Zhang S R et al.. 2006. Effect of “05-06” Xijiang River extreme flood on carbon export flux. Chinese Science Bulletin, 51(23): 2773–2779. (in Chinese)

    Article  Google Scholar 

  • Syvitski J P, Morehead M D, Nicholson M. 1998. Hydrotrend: A climate-driven hydrologic-transport model for predicting discharge and sediment load to lakes or oceans. Computers & Geosciences, 24(1): 51–68.

    Article  Google Scholar 

  • Taikan O, Shinjiro K. 2006. Global hydrological cycles and world water resources. Science, 313(5790): 1068–1072.

    Article  Google Scholar 

  • Tobin K J, Bennett M E. 2013. Temporal analysis of Soil and Water Assessment Tool (SWAT) performance based on remotely sensed precipitation products. Hydrological Processes, 27(4): 505–514.

    Article  Google Scholar 

  • Tonkin M J, Hill M C, Doherty J. 2003. MODFLOW-2000, the U.S. Geological Survey modular ground-water model-Documentation of MOD-PREDICT for predictions, prediction sensitivity analysis, and evaluation of uncertainty. US Geological Society.

    Book  Google Scholar 

  • Tromp-Van Meerveld H J, Mcdonnell J J. 2006. Threshold relations in subsurface stormflow: 1. A 147-storm analysis of the Panola hillslope. Water Resources Research, 42(2).

    Google Scholar 

  • Turner M G, Gardner R H, O’neill R V et al.. 2001. Landscape Ecology in Theory and Practice. New York: Springer.

    Google Scholar 

  • Uchida T, Meerveld T V, Mcdonnell J J. 2005. The role of lateral pipe flow in hillslope runoff response: An intercomparison of non-linear hillslope response. Journal of Hydrology, 311(1–4): 117–133.

    Article  Google Scholar 

  • Ullrich A, Volk M. 2010. Influence of different nitrate–N monitoring strategies on load estimation as a base for model calibration and evaluation. Environmental Monitoring and Assessment, 171(1–4): 513–527.

    Article  Google Scholar 

  • Valiela D, Whitfield P H. 1989. Monitoring strategies to determine compliance with water quality objiectives 1. JAWRA Journal of the American Water Resources Association, 25(1): 63–69.

    Article  Google Scholar 

  • Voermans J J, Ghisalberti M, Ivey G N. 2018. A model for mass transport across the sediment-water interface. Water Resources Research, 54(4): 2799–2812.

    Article  Google Scholar 

  • Wang E L, Wang S Q, Liu N. 2012. Nitrate-nitrogen output flux simulation from different sandy soils in Western Liaohe River basin. Research of Environmental Sciences, 25(2): 165–172. (in Chinese)

    Google Scholar 

  • Wang H. 2004. Estimation of annual flux of pollutants in water quality section of the main stream of the Huaihe River. Water Resources Protection, 20(6): 37–39. (in Chinese)

    Google Scholar 

  • Wang J L, Jiang G Q, Ren X W et al.. 2011. Investigation of monitoring strategies estimation methods for watershed pollutant fluxes. Environmental Protection of Xinjiang, 33(2): 1–7. (in Chinese)

    Google Scholar 

  • Wang T J, Li Z K. 1994. A method for calculating regional dry settlement velocity distribution of pollutants. Journal of Nanjing University (Natural Science), (4): 745–752. (in Chinese)

    Google Scholar 

  • Wang X, Cheng B, Yang Z J et al.. 2018. Differences in diffusive fluxes of nutrients from sediment between the natural river areas and reservoirs in the Lancang River basin. Environmental Science, 39(5): 2126–2134. (in Chinese)

    Google Scholar 

  • Wang X Y, Qin F L, Ou Y et al.. 2008. SWAT-based simulation on non-point source pollution in the northern watershed of Miyun Reservoir. Journal of Agro-Environment Science, 27(3): 1098–1105. (in Chinese)

    Google Scholar 

  • Webb B W, Phillips J M, Walling D E et al.. 1997. Load estimation methodologies for British rivers and their relevance to the LOIS RACS(R) programme. Science of the Total Environment, 194(96): 379–389.

    Article  Google Scholar 

  • Webster I T, Smith S V, Parslow J S. 2000. Implications of spatial and temporal variation for biogeochemical budgets of estuaries. Estuaries, 23(3): 341–350.

    Article  Google Scholar 

  • Weng Q. 2014. Modeling urban growth effects on surface runoff with the integration of remote sensing and GIS. Environmental Management, 28(6): 737–748.

    Article  Google Scholar 

  • Wesely M L, Hicks et al.. 2000. Review of the current status of knowledge on dry deposition. Atmospheric Environment, 34(12): 2261–2282.

    Article  Google Scholar 

  • Wiltshire J J J, Wright C J, Colls J J et al.. 1995. Effects of heat balance stem-flow gauges and associated silicone compound on ash trees. Agricultural & Forest Meteorology, 73(1): 135–142.

    Article  Google Scholar 

  • Worrall F, Burt T P. 1999. Impact of land-use change on watar quality at the catchment scale: The use of export coefficient and structural models. Journal of Hydrology, 221(1/2): 75–90.

    Article  Google Scholar 

  • Wraith J M, Das B S. 1998. Monitoring soil water and ionic solute distributions using time-domain reflectometry. Soil and Tillage Research, 47(1): 145–150.

    Article  Google Scholar 

  • Xi Y C, Mulder J. 2007. Indicators for nitrogen status and leaching in subtropical forest ecosystems, South China. Biogeochemistry, 82(2): 165–180.

    Article  Google Scholar 

  • Xiao X, Wu H W, Li X Y. 2016. Research progress and prospects of subsurface flow. Journal of Arid Meteorology, 34(3): 391–402. (in Chinese)

    Google Scholar 

  • Xu H, Zhang L, Shang J G et al.. 2009. Flow culture of nitrogen and phosphorus release fluxes at the water-soil interface of Taihu Lake. Journal of Ecology and Rural Environment, 25(4): 66–71. (in Chinese)

    Google Scholar 

  • Xu Z Z, Xu Y, Yu D et al.. 2018. Study of nitrogen and phospheorus fluxes into the sea from sluice-controlled river in plain urban area. Marine Environmental Science, 37(6): 819–825. (in Chinese)

    Google Scholar 

  • Yan Z, Tijian W, Zhengyi H et al.. 2004. Temporal variety and spatial distribution of dry deposition velocities of typical air pollutants over different landuse types. Climatic and Environmental Research, 9(4): 591–604.

    Google Scholar 

  • Yang K, Zhou D, Wu B et al.. 2011. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Climatic Change, 109(3/4): 517–534.

    Article  Google Scholar 

  • Yang Z, Liang T, Li K et al.. 2016. The diffusion fluxes and sediment activity of phosphorus in the sediment–water interface of Poyang Lake. Journal of Freshwater Ecology, 31(4): 521–531.

    Article  Google Scholar 

  • Zhang B F, Chen D J. 2014. Dynamic response of riverine nitrate flux to net anthropogenic nitrogen inputs in a typical river in Zhejiang province over the 1980–2010 period. Environmental Science, 35(8): 2911–2919. (in Chinese)

    Google Scholar 

  • Zhang D, Duan H, Yang H X et al.. 2015. Study on the estimation of river pollutant flux in rural area. China Biogas, 33(3): 95–98. (in Chinese)

    Google Scholar 

  • Zhang H J, Cheng J H, Shi Y H et al.. 2004. Response of preferential flow to rainfall on the forestland slope in the granite area of Three Gorges. Journal of Beijing Forestry University, 26(5): 6–9. (in Chinese)

    Google Scholar 

  • Zhang L, Brook J R, Vet R. 2003. A revised parameterization for gaseous dry deposition in air-quality models. Atmospheric Chemistry and Physics, 3: 2067–2082.

    Article  Google Scholar 

  • Zhang L, Gong S, Padro J et al.. 2001. A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmospheric Environment, 35(3): 549–560.

    Article  Google Scholar 

  • Zhang L, Fan C X, Wang J J et al.. 2006. Space-time dependent variances of ammonia and phosphorus flux on sediment-water interface in Lake Taihu. Environmental Science, 27(8): 1537–1543. (in Chinese)

    Google Scholar 

  • Zhang L K, Qin X Q, Yang H et al.. 2013. Transported fluxes of the riverine carbon and seasonal variation in Pearl River Basin. Environmental Science, 34(8): 3025–3034. (in Chinese)

    Google Scholar 

  • Zhao C C, Zhang S Y, Mao X Z. 2014. Variations of annual load of TN and TP in the deep bay watershed. Environmental Science, (11): 4111–4117. (in Chinese)

    Google Scholar 

  • Zhao H, Zhang L, Wang S et al.. 2018. Features and influencing factors of nitrogen and phosphorus diffusive fluxes at the sediment-water interface of Erhai Lake. Environmental Science and Pollution Research, 25(2): 1933–1942.

    Article  Google Scholar 

  • Zhao S, Shi X, Li C et al.. 2017. Diffusion flux of phosphorus nutrients at the sediment-water interface of the Ulansuhai Lake in northern China. Water Science and Technology, 75(6): 1455–1465.

    Article  Google Scholar 

  • Zhu G W, Qin B Q, Zhang L et al.. 2005. Wave effects on nutrient release of sediments from Lake Taihu by flume experiments. Journal of Lake Sciences, 17(1): 61–68. (in Chinese)

    Article  Google Scholar 

  • Zhu J Y, Gao Z Y, Wang X L. 2008. Specifications for Water Measurement of Irrigation Canal System. Beijing: Standards Press of China. (in Chinese)

    Google Scholar 

  • Zhu Q, Nie X F, Zhou X B et al.. 2014. Soil moisture response to rainfall at different topographic positions along a mixed land-use hillslope. Catena, 119: 61–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Gao.

Additional information

Foundation: The Major Science and Technology Program for Water Pollution Control and Treatment, No.2017ZX07101- 001; National Natural Science Foundation of China, No.41922003, No.41871080

Author: Lu Yao (1995–), MS Candidate, specialized in ecological hydrology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Gao, Y. & Yang, T. A review of mass flux monitoring and estimation methods for biogeochemical interface processes in watersheds. J. Geogr. Sci. 30, 881–907 (2020). https://doi.org/10.1007/s11442-020-1760-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11442-020-1760-5

Keywords

Navigation