Skip to main content
Log in

Finite element modeling of thermo-hydro-mechanical coupled processes in clay soils considering bound water dehydration

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper presents a new finite element method (FEM) model to simulate the thermo-hydro-mechanical (THM) responses of water-saturated clay soils. The model can account for the effects of temperature variation on bound water dehydration and the corresponding thermo-poromechanical strains. The governing equations, including mass balance, momentum balance, and energy balance, are derived based on the principles of continuum mechanics for porous media. The impact of bound water dehydration on THM behavior is incorporated into the coupled THM equations. The model is equipped with an unconventional plasticity for more accurate description of elastoplastic behavior. To solve the nonlinear system of equations, a modified Newton–Raphson method is employed. The model is validated using laboratory tests on various clay soils with different geological origins, and reasonable agreement is achieved. The thermally induced contraction behavior of clay soils at a low overconsolidation ratio and thermally induced expansion behavior at a high overconsolidation ratio are well simulated. During heating, the effect of bound water dehydration on the generation of excess pore pressure in clay soils is highlighted in our numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The original data that support the findings of this study are available from the corresponding author, BL, upon request.

Abbreviations

\(c_{{\text{s}}}\) :

Specific heat capacity of solid

\(c_{{\text{f}}}\) :

Specific heat capacity of free water

\(c_{{\text{b}}}\) :

Specific heat capacity of bound water

\(F_{0}\) :

Preconsolidation pressure

g:

Gravity

H :

Hardening parameter

\(h_{{\text{e}}}\) :

Maximum element length of the mesh

\({\mathbf{k}}\) :

Intrinsic permeability

\(\overline{N}\) :

Normalized outward normal of the subloading surface

n :

Soil porosity

\(n_{{\text{s}}}\) :

Volume fractions of the solid phase

\(n_{{\text{f}}}\) :

Volume fractions of the free water phase

\(n_{{\text{b}}}\) :

Volume fractions of the bound water phase

\({\mathbf{n}}\) :

Outward normal direction

\(P^{{\text{f}}}\) :

Pore water pressure

\(P_{{\text{e}}}\) :

Local Peclet number

\({\mathbf{q}}\) :

Volumetric flow rate per unites of surface area

\(\overline{q}^{{\text{f}}}\) :

Water flux at the boundary

\(\overline{q}^{{\text{T}}}\) :

Heat flux at the boundary

R :

Similarity ratio

\(s_{{\text{f}}}\) :

Degree of saturation of free water

\(s_{{\text{b}}}\) :

Degree of saturation of bound water

T :

Temperature

\(T_{{{\text{Ini}}}}\) :

Initial temperature

\(T_{{\text{e}}}\) :

Temperature of the surrounding environment

\({\overline{\mathbf{t}}}\) :

Traction boundary condition

u :

Material parameter

\(v_{{\text{s}}}\) :

Soil particles velocity

\(v_{{\text{f}}}\) :

Free water velocity

\(w_{{\text{b}}}\) :

Bound water content

\(w_{{{\text{b}},{\text{Ini}}}}\) :

Bound water content at the initial temperature

\(\alpha_{{{\text{bf}}}}\) :

Constant that controls the conversion of bound to free water per each unit rise in temperature

\(\beta_{{\text{s}}}\) :

Thermal expansion coefficient of the soil phase

\(\beta_{{\text{f}}}\) :

Thermal expansion coefficient of the free water phase

\(\beta_{{\text{b}}}\) :

Thermal expansion coefficient of the bound water phase

\(\beta_{{\text{T}}}\) :

Equivalent thermal expansion coefficient

\(\gamma_{t}\) :

Thermal softening coefficient

\(\varepsilon\) :

Total strain

\(\varepsilon^{e}\) :

Elastic strain

\(\varepsilon^{p}\) :

Plastic strain

\(\varepsilon^{T}\) :

Thermal elastic strain

\(\kappa\) :

Slopes of the unloading–reloading line

\(\lambda_{{{\text{eff}}}}\) :

Effective thermal conductivity

\(\lambda_{{\text{s}}}\) :

Thermal conductivity of solid

\(\lambda_{{\text{f}}}\) :

Thermal conductivity of free water

\(\lambda_{{\text{b}}}\) :

Thermal conductivity of bound water

\(\lambda\) :

Slopes of the normal consolidation line

\(\overline{\lambda }\) :

Positive proportionality factor

\(\lambda_{{\text{e}}}\) :

Thermal conductivity of the surrounding environment

\(\mu_{{\text{f}}}\) :

Dynamic viscosity of water

\(\rho_{{\text{s}}}\) :

Density of soil particles

\(\rho_{{\text{f}}}\) :

Density of free water

\(\rho_{{\text{b}}}\) :

Density of bound water

\(\rho_{{{\text{eff}}}}\) :

Bulk density of the solid bound water–fluid mixture

\(\left( {\rho c} \right)_{{{\text{eff}}}}\) :

Effective heat capacity

\({{\varvec{\upsigma}}}\) :

Total Cauchy stress tensor

\({{\varvec{\upsigma}}}^{{\mathbf{\prime }}}\) :

Effective Cauchy stress tensor

References

  1. Abuel-Naga HM, Bergado DT, Bouazza A (2007) Thermally induced volume change and excess pore water pressure of soft Bangkok clay. Eng Geol 89:144–154

    Article  Google Scholar 

  2. An M, Zhang F, Min K et al (2021) The potential for low-grade metamorphism to facilitate fault instability in a geothermal reservoir. Geophys Res Lett 48:e2021GL093552

    Article  ADS  CAS  Google Scholar 

  3. Bekele YW, Kyokawa H, Kvarving AM et al (2017) Isogeometric analysis of THM coupled processes in ground freezing. Comput Geotech 88:129–145

    Article  Google Scholar 

  4. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259

    Article  ADS  MathSciNet  Google Scholar 

  5. Brown KM, Ransom B (1996) Porosity corrections for smectite-rich sediments: impact on studies of compaction, fluid generation, and tectonic history. Geology 24:843–846

    Article  ADS  CAS  Google Scholar 

  6. Brown KM, Saffer DM, Bekins BA (2001) Smectite diagenesis, pore-water freshening, and fluid flow at the toe of the Nankai wedge. Earth Planet Sci Lett 194:97–109

    Article  ADS  CAS  Google Scholar 

  7. Cacace M, Jacquey AB (2017) Flexible parallel implicit modelling of coupled thermal-hydraulic-mechanical processes in fractured rocks. Solid Earth 8:921–941. https://doi.org/10.5194/se-8-921-2017

    Article  ADS  Google Scholar 

  8. Cariou S, Dormieux L, Skoczylas F (2013) An original constitutive law for Callovo-Oxfordian argillite, a two-scale double-porosity material. Appl Clay Sci 80:18–30

    Article  Google Scholar 

  9. Cekerevac C, Laloui L (2004) Experimental study of thermal effects on the mechanical behaviour of a clay. Int J Numer Anal methods. Geomech 28:209–228

    Article  Google Scholar 

  10. Colten-Bradley VA (1987) Role of pressure in smectite dehydration—effects on geopressure and smectite-to-illite transformation. Am Assoc Pet Geol Bull 71:1414–1427

    CAS  Google Scholar 

  11. Cui YJ, Sultan N, Delage P (2000) A thermomechanical model for saturated clays. Can Geotech J 37:607–620. https://doi.org/10.1139/t99-111

    Article  Google Scholar 

  12. Delage P, Sultan N, Cui YJ (2000) On the thermal consolidation of Boom clay. Can Geotech J 37:343–354

    Article  Google Scholar 

  13. Diersch H-J, Kolditz O (1998) Coupled groundwater flow and transport: 2. Thermohaline and 3D convection systems. Adv Water Resour 21:401–425

    Article  ADS  Google Scholar 

  14. Di Donna A, Charrier P, Dijkstra J et al (2022) The contribution of swelling to self-sealing of claystone studied through x-ray tomography. Phys Chem Earth, Parts A/B/C 127:103191

    Article  Google Scholar 

  15. Di Donna A, Laloui L (2015) Response of soil subjected to thermal cyclic loading: experimental and constitutive study. Eng Geol 190:65–76. https://doi.org/10.1016/j.enggeo.2015.03.003

    Article  Google Scholar 

  16. Galeao AC, Almeida RC, Malta SMC, Loula AFD (2004) Finite element analysis of convection dominated reaction–diffusion problems. Appl Numer Math 48:205–222

    Article  MathSciNet  Google Scholar 

  17. Ghasemzadeh H, Ghoreishian Amiri SA (2013) A hydro-mechanical elastoplastic model for unsaturated soils under isotropic loading conditions. Comput Geotech 51:91–100. https://doi.org/10.1016/j.compgeo.2013.02.006

    Article  Google Scholar 

  18. Ghasemzadeh H, Sojoudi MH, Ghoreishian Amiri SA, Karami MH (2017) Elastoplastic model for hydro-mechanical behavior of unsaturated soils. Soils Found 57:371–383. https://doi.org/10.1016/j.sandf.2017.05.005

    Article  Google Scholar 

  19. Gray WG, Miller CT (2005) Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 1 motivation and overview. Adv Water Resour 28:161–180

    Article  ADS  Google Scholar 

  20. Hashiguchi K, Saitoh K, Okayasu T, Tsutsumi S (2002) Evaluation of typical conventional and unconventional plasticity models for prediction of softening behaviour of soils. Géotechnique 52:561–578. https://doi.org/10.1680/geot.52.8.561.38829

    Article  Google Scholar 

  21. Hong PY, Pereira JM, Tang AM, Cui YJ (2013) On some advanced thermo-mechanical models for saturated clays. Int J Numer Anal Methods Geomech 37:2952–2971. https://doi.org/10.1002/nag.2170

    Article  Google Scholar 

  22. Hueckel T (2002) Reactive plasticity for clays during dehydration and rehydration. Part 1: concepts and options. Int J Plast 18:281–312. https://doi.org/10.1016/S0749-6419(00)00099-1

    Article  CAS  Google Scholar 

  23. Hueckel T, Baldi G (1990) Thermoplasticity of saturated clays: experimental constitutive study. J Geotech Eng 116:1778–1796. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:12(1778)

    Article  Google Scholar 

  24. Hueckel T, Peano A, Pellegrini R (1994) A thermo-plastic constitutive law for brittle-plastic behavior of rocks at high temperatures. Pure Appl Geophys PAGEOPH 143:483–510. https://doi.org/10.1007/BF00874339

    Article  ADS  Google Scholar 

  25. Hüpers A, Kopf AJ (2009) The thermal influence on the consolidation state of underthrust sediments from the Nankai margin and its implications for excess pore pressure. Earth Planet Sci Lett 286:324–332. https://doi.org/10.1016/j.epsl.2009.05.047

    Article  ADS  CAS  Google Scholar 

  26. Kawaragi Y, Okamura K (2017) Application of subloading surface model to heat treatment simulation based on explicit finite element method. In: Key engineering materials. Trans Tech Publication, Wollerau, pp 287–292

  27. Laloui L, Cekerevac C (2003) Thermo-plasticity of clays: an isotropic yield mechanism. Comput Geotech 30:649–660

    Article  Google Scholar 

  28. Laloui L, François B (2009) ACMEG-T: soil thermoplasticity model. J Eng Mech 135:932–944

    Article  Google Scholar 

  29. Lewis RW, Schrefler BA (1999) The finite element method in the static and dynamic deformation and consolidation of porous media, 2nd edn. Wiley, UK

    Google Scholar 

  30. Lewis RW, Roberts PJ, Schrefler BA (1989) Finite element modelling of two-phase heat and fluid flow in deforming porous media. Transp Porous Media 4:319–334

    Article  Google Scholar 

  31. Li B, Wong RCK (2017) A mechanistic model for anisotropic thermal strain behavior of soft mudrocks. Eng Geol 228:146–157. https://doi.org/10.1016/j.enggeo.2017.08.008

    Article  Google Scholar 

  32. Li B, Wong RCK (2016) Quantifying structural states of soft mudrocks. J Geophys Res Solid Earth 121:3324–3347. https://doi.org/10.1002/2015JB012454

    Article  ADS  Google Scholar 

  33. Li B, Wong RCK, Heidari S (2018) A modified Kozeny-Carman model for estimating anisotropic permeability of soft mudrocks. Mar Pet Geol 98:356–368. https://doi.org/10.1016/j.marpetgeo.2018.08.034

    Article  Google Scholar 

  34. Ma C, Hueckel T (1992) Effects of inter-phase mass transfer in heated clays: a mixture theory. Int J Eng Sci 30:1567–1582

    Article  CAS  Google Scholar 

  35. Ma C, Hueckel T (1993) Thermomechanical effects on adsorbed water in clays around a heat source. Int J Numer Anal Methods Geomech 17:175–196

    Article  Google Scholar 

  36. Mitchell JK, Soga K (2005) Fundamentals of soil behavior. Wiley, New York

    Google Scholar 

  37. Del Olmo C, Fioravante V, Gera F et al (1996) Thermomechanical properties of deep argillaceous formations. Eng Geol 41:87–102

    Article  Google Scholar 

  38. Rotta Loria AF, Coulibaly JB (2021) Thermally induced deformation of soils: a critical overview of phenomena, challenges and opportunities. Geomech Energy Environ 25:100193. https://doi.org/10.1016/j.gete.2020.100193

    Article  Google Scholar 

  39. Saffer DM, McKiernan AW (2009) Evaluation of in situ smectite dehydration as a pore water freshening mechanism in the nankai trough, offshore southwest Japan. Geochem, Geophys Geosyst 10:1–24. https://doi.org/10.1029/2008GC002226

    Article  CAS  Google Scholar 

  40. Samimi S, Pak A (2016) A three-dimensional mesh-free model for analyzing multi-phase flow in deforming porous media. Meccanica 51:517–536

    Article  MathSciNet  Google Scholar 

  41. Semnani SJ, White JA, Borja RI (2016) Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity. Int J Numer Anal Methods Geomech 40:2423–2449

    Article  CAS  Google Scholar 

  42. Sojoudi M, Li B (2023) A thermodynamic-based model for modeling thermo-elastoplastic behaviors of saturated clayey soils considering bound water dehydration. J Rock Mech Geotech Eng 15:1535–1546. https://doi.org/10.1016/j.jrmge.2022.09.008

    Article  Google Scholar 

  43. Tremosa J, Gailhanou H, Chiaberge C et al (2020) Effects of smectite dehydration and illitisation on overpressures in sedimentary basins: a coupled chemical and thermo-hydro-mechanical modelling approach. Mar Pet Geol 111:166–178

    Article  CAS  Google Scholar 

  44. Vidal O, Dubacq B (2009) Thermodynamic modelling of clay dehydration, stability and compositional evolution with temperature, pressure and H2O activity. Geochim Cosmochim Acta 73:6544–6564. https://doi.org/10.1016/j.gca.2009.07.035

    Article  ADS  CAS  Google Scholar 

  45. Wang H, Cheng X, Chu J (2021) Finite element analyses of rate-dependent thermo-hydro-mechanical behaviors of clayey soils based on thermodynamics. Acta Geotech 16:1829–1847

    Article  CAS  Google Scholar 

  46. Yao C, Wei C, Ma T et al (2021) Experimental investigation on the influence of thermochemical effect on the pore–water status in expansive soil. Int J Geomech 21:4021080

    Article  Google Scholar 

  47. Zhang Z (2017) A thermodynamics-based theory for the thermo-poro-mechanical modeling of saturated clay. Int J Plast 92:164–185. https://doi.org/10.1016/j.ijplas.2017.03.007

    Article  Google Scholar 

  48. Zhang F, An M, Zhang L et al (2019) The role of mineral composition on the frictional and stability properties of powdered reservoir rocks. J Geophys Res Solid Earth 124:1480–1497

    Article  ADS  Google Scholar 

  49. Zhang Z, Cheng X (2017) A fully coupled THM model based on a non-equilibrium thermodynamic approach and its application. Int J Numer Anal Methods Geomech 41:527–554. https://doi.org/10.1002/nag.2569

    Article  Google Scholar 

  50. Zymnis DM, Whittle AJ, Cheng X (2019) Simulation of long-term thermo-mechanical response of clay using an advanced constitutive model. Acta Geotech 14:295–311. https://doi.org/10.1007/s11440-018-0726-6

    Article  Google Scholar 

  51. Zymnis DM, Whittle AJ, Germaine JT (2018) Measurement of temperature-dependent bound water in clays. Geotech Test J 42:232–244. https://doi.org/10.1520/GTJ20170012

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the fund provided by NSERC Discovery Grant Canada (NO. RGPIN-2017-05169). Comments from two anonymous reviewers are beneficial for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Li.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare. All co-authors have seen and agreed with the contents of the manuscript. We certify that the submission is original work and is not under review at any other publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sojoudi, M., Li, B. & Norouzi, E. Finite element modeling of thermo-hydro-mechanical coupled processes in clay soils considering bound water dehydration. Acta Geotech. (2024). https://doi.org/10.1007/s11440-024-02262-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11440-024-02262-7

Keywords

Navigation