Skip to main content
Log in

Load transfer mechanism of geotextile-reinforced sand layer over semirigid column-improved soft soil

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Many design guidelines have been proposed for piled embankments, most of which consider piles or columns as rigid inclusions. In this study, a small-scale physical model test was performed to investigate the load transfer mechanism of a geotextile-reinforced sand layer over a soft subsoil improved by semirigid columns. A multi-stage load was applied at the top of the sand layer until the columns started to yield. When the columns yielded, a reverse load transfer was observed. Vertical stresses were measured and analyzed in terms of efficacy and stress reduction ratio (SRR) with a comparison of existing design guidelines for assessing soil arching. Among the reviewed guidelines, the approach recommended by the Dutch guidelines provided the closest results to the experimental data, whereas the one adopted by the American guidelines predicted well the change in efficacy and SRR under different surcharge loads. However, the load transfer mechanism after the yielding of columns is beyond the scope of the existing design guidelines. In addition, it was found through regression analysis that the increment of vertical stresses on columns and surrounding soil followed an inclined line under partially undrained conditions during loading stages and a curve during consolidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Airport Authority Hong Kong (2012) Expansion of Hong Kong international airport into a three-runway system project profile. http://www.epd.gov.hk/eia/register/profile/latest/esb250/esb250.pdf

  2. ASTM (2005) 4595 Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method. ASTM Standards

  3. BS 8006 (2010) Code of Practice for Strengthened/Reinforced Soils and Other Fills. British Standard Institution, UK

  4. Butterfield R (1999) Dimensional analysis for geotechnical engineers. Geotechnique 49(3):357–366. https://doi.org/10.1680/geot.1999.49.3.357

    Article  Google Scholar 

  5. EBGEO (2010) Empfehlungen für den Entwurf und die Berechnung von Erdkörpern mit Bewehrungen aus Geokunststoffen e EBGEO, vol. 2 German Geotechnical Society, Auflage978-3-433-02950-3 (in German). Also available in English: Recommendations for Design and Analysis of Earth Structures using Geosynthetic Reinforcements e EBGEO, 2011. ISBN: 978-3-433-02983-1 and digital in English ISBN: 978-3-433-60093-1.

  6. Feng WQ, Yin JH, Chen WB, Tan DY, Wu PC (2020) A new simplified method for calculating consolidation settlement of multi-layer soft soils with creep under multi-stage ramp loading. Eng Geol 264:105322. https://doi.org/10.1016/j.enggeo.2019.105322

    Article  Google Scholar 

  7. Filz GM, Smith ME (2006) Design of bridging layers in geosynthetic-reinforced, column-supported embankments. Virginia Center for Transportation Innovation and Research. http://hdl.handle.net/10919/46681

  8. Filz GM, Sloan JA, McGuire MP, Smith M, Collin J (2019) Settlement and vertical load transfer in column-supported embankments. J Geotechn Geoenviron Eng 145(10):04019083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002130

    Article  Google Scholar 

  9. Gibson RE, Gobert A, Schiffman RL (1989) On Cryer’s problem with large displacements. Int J Numer Anal Meth Geomech 13(3):251–262. https://doi.org/10.1002/nag.1610130303

    Article  Google Scholar 

  10. Han J, Gabr MA (2002) Numerical analysis of geosynthetic-reinforced and pile-supported earth platforms over soft soil. J Geotechn Geoenviron Eng 128(1):44–53. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:1(44)

    Article  Google Scholar 

  11. Han J, Wayne MH (2000) Pile-soil-geosynthetic interactions in geosynthetic reinforced platform/piled embankments over soft soil. In Presentation at 79th annual transportation research board meeting, Washington, DC

  12. Ho TO, Tsang DC, Chen WB, Yin JH (2020) Evaluating the environmental impact of contaminated sediment column stabilized by deep cement mixing. Chemosphere 261:127755. https://doi.org/10.1016/j.chemosphere.2020.127755

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Ho TO, Chen WB, Yin JH, Wu PC, Tsang DC (2021) Stress-strain behaviour of cement-stabilized Hong Kong marine deposits. Constr Build Mater 274:122103. https://doi.org/10.1016/j.conbuildmat.2020.122103

    Article  Google Scholar 

  14. Iglesia GR, Einstein HH, Whitman RV (2014) Investigation of soil arching with centrifuge tests. J Geotechn Geoenviron Eng 140(2):04013005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000998

    Article  Google Scholar 

  15. Jamsawang P, Yoobanpot N, Thanasisathit N, Voottipruex P, Jongpradist P (2016) Three-dimensional numerical analysis of a DCM column-supported highway embankment. Comput Geotech 72:42–56. https://doi.org/10.1016/j.compgeo.2015.11.006

    Article  Google Scholar 

  16. Kamruzzaman AH, Chew SH, Lee FH (2009) Structuration and destructuration behavior of cement-treated Singapore marine clay. J Geotechn Geoenviron Eng 135(4):573–589. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:4(573)

    Article  Google Scholar 

  17. King DJ, Bouazza A, Gniel JR, Rowe RK, Bui HH (2017) Load-transfer platform behaviour in embankments supported on semi-rigid columns: implications of the ground reaction curve. Can Geotech J 54(8):1158–1175. https://doi.org/10.1139/cgj-2016-0406

    Article  Google Scholar 

  18. King DJ, Bouazza A, Gniel JR, Rowe RK, Bui HH (2017) Serviceability design for geosynthetic reinforced column supported embankments. Geotext Geomembr 45(4):261–279. https://doi.org/10.1016/j.geotexmem.2017.02.006

    Article  Google Scholar 

  19. King L, King D, Bouazza A, Gniel J, Rowe RK (2021) Design of geosynthetic reinforced column supported embankments using an interaction diagram. Geotext Geomembr 49(1):159–165. https://doi.org/10.1016/j.geotexmem.2020.09.010

    Article  Google Scholar 

  20. Kitazume M, Terashi M (2013) The deep mixing method. CRC Press, London

    Book  Google Scholar 

  21. Lee T, van Eekelen SJM, Jung YH (2020) Numerical verification of the Concentric Arches model for geosynthetic-reinforced pile-supported embankments: applicability and limitations. Can Geotechn J 58(3):441–454. https://doi.org/10.1139/cgj-2019-0625

    Article  Google Scholar 

  22. Liu KW, Rowe RK (2015) Numerical study of the effects of geosynthetic reinforcement viscosity on behaviour of embankments supported by deep-mixing-method columns. Geotext Geomembr 43(6):567–578. https://doi.org/10.1016/j.geotexmem.2015.04.020

    Article  Google Scholar 

  23. Liu KW, Rowe RK, Su Q, Liu B, Yang Z (2017) Long-term reinforcement strains for column supported embankments with viscous reinforcement by FEM. Geotext Geomembr 45(4):307–319. https://doi.org/10.1016/j.geotexmem.2017.04.003

    Article  Google Scholar 

  24. Low BK, Tang SK, Choa V (1994) Arching in piled embankments. J Geotechn Eng 120(11):1917–1938. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:11(1917)

    Article  Google Scholar 

  25. Phutthananon C, Jongpradist P, Jongpradist P, Dias D, Baroth J (2020) Parametric analysis and optimization of T-shaped and conventional deep cement mixing column-supported embankments. Comput Geotech 122:103555. https://doi.org/10.1016/j.compgeo.2020.103555

    Article  Google Scholar 

  26. Rui R, Zhai YX, Han J, Van Eekelen SJM, Chen C (2020) Deformations in trapdoor tests and piled embankments. Geosynth Int 27(2):219–235. https://doi.org/10.1680/jgein.19.00014

    Article  Google Scholar 

  27. Russell D, Pierpoint N (1997) An assessment of design methods for piled embankments. Ground Eng 30(10)

  28. Schaefer VR, Berg RR, Collin JG, Christopher BR, DiMaggio JA, Filz GM, Bruce DA, Ayala D (2017) Ground modification methods reference manual—Volume I and II. Washington, DC: Federal Highway Administration. https://www.fhwa.dot.gov/engineering/geotech/pubs/nhi16027.pdf

  29. Sloan JA (2011) Column-supported embankments: full-scale tests and design recommendations. Doctoral dissertation, Virginia Tech

  30. Sloan J, Filz GM, Collin J (2011) A generalized formulation of the adapted terzaghi method of arching in column-supported embankments. In: Geo-Frontiers 2011: Advances in Geotechnical Engineering, pp 798–805 https://doi.org/10.1061/41165(397)82

  31. Sun Z, Chen WB, Zhao RD, Jin YF, Yin JH (2023) Solidification/stabilization treatment of Hong Kong marine deposits slurry at high water content by ISSA and GGBS. Constr Build Mater 372:130817. https://doi.org/10.1016/j.conbuildmat.2023.130817

  32. Sun Z, Chen WB, Zhao RD, Shen P, Yin JH, Chen YG (2023) Effect of seawater on solidification/stabilisation treatment of marine soft soil slurry by lime-activated ISSA and GGBS Engineering Geology 323:107216. https://doi.org/10.1016/j.enggeo.2023.107216

    Article  Google Scholar 

  33. Terzaghi K (1943) Stress conditions for failure in soils. In: Theoretical soil mechanics. Wiley, New York, pp 11–15 https://doi.org/10.1002/9780470172766.fmatter

  34. van Eekelen SJM, Bezuijen A, Lodder HJ, van Tol EA (2012) Model experiments on piled embankments. Part I. Geotextiles Geomembranes 32:69–81. https://doi.org/10.1016/j.geotexmem.2011.11.002

    Article  Google Scholar 

  35. van Eekelen SJM, Bezuijen A, Lodder HJ, van Tol EA (2012) Model experiments on piled embankments. Part II. Geotextiles Geomembr 32:82–94. https://doi.org/10.1016/j.geotexmem.2011.11.003

    Article  Google Scholar 

  36. van Eekelen SJM, Bezuijen A, Van Tol AF (2013) An analytical model for arching in piled embankments. Geotext Geomembr 39:78–102. https://doi.org/10.1016/j.geotexmem.2013.07.005

    Article  Google Scholar 

  37. van Eekelen SJM, Bezuijen A, Van Tol AF (2015) Validation of analytical models for the design of basal reinforced piled embankments. Geotext Geomembr 43(1):56–81. https://doi.org/10.1016/j.geotexmem.2014.10.002

    Article  Google Scholar 

  38. van Eekelen SJ, Brugman MH (2016) Design guideline basal reinforced piled embankments. CRC Press

    Book  Google Scholar 

  39. van Eekelen SJ, Han J (2020) Geosynthetic-reinforced pile-supported embankments: state of the art. Geosynth Int 27(2):112–141. https://doi.org/10.1680/jgein.20.00005

    Article  Google Scholar 

  40. van der Peet TC, van Eekelen SJM (2014) 3D numerical analysis of basal reinforced piled embankments. In: Tenth international conference on geosynthetics, pp 21–25

  41. Waichita S, Jongpradist P, Schweiger HF (2020) Numerical and experimental investigation of failure of a DCM-wall considering softening behaviour. Comput Geotech 119:103380. https://doi.org/10.1016/j.compgeo.2019.103380

    Article  Google Scholar 

  42. Wang HL, Chen RP, Liu QW, Kang X (2019) Investigation on geogrid reinforcement and pile efficacy in geosynthetic-reinforced pile-supported track-bed. Geotext Geomembr 47(6):755–766. https://doi.org/10.1016/j.geotexmem.2019.103489

    Article  Google Scholar 

  43. Wang HL, Chen RP, Cheng W, Qi S, Cui YJ (2019) Full-scale model study on variations of soil stress in geosynthetic-reinforced pile-supported track bed with water level change and cyclic loading. Can Geotech J 56(1):60–68. https://doi.org/10.1139/cgj-2017-0689

    Article  Google Scholar 

  44. Wijerathna M, Liyanapathirana DS, Jian Leo C (2017) Analytical solution for the consolidation behavior of deep cement mixed column–improved ground. Int J Geomechan 17(9):04017065. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000954

    Article  Google Scholar 

  45. Wood DM (2003) Geotechnical modelling, vol 1. CRC Press

    Google Scholar 

  46. Wu PC, Yin JH, Feng WQ, Chen WB (2019) Experimental study on geosynthetic-reinforced sand fill over marine clay with or without deep cement mixed soil columns under different loadings. Underground space 4(4):340–347. https://doi.org/10.1016/j.undsp.2019.03.001

    Article  Google Scholar 

  47. Wu PC, Feng WQ, Yin JH (2020) Numerical study of creep effects on settlements and load transfer mechanisms of soft soil improved by deep cement mixed soil columns under embankment load. Geotext Geomembr 48(3):331–348. https://doi.org/10.1016/j.geotexmem.2019.12.005

    Article  Google Scholar 

  48. Wu PC, Feng WQ, Qin JQ, Liu KF, Yin JH (2023) A New Calculation Method for Life Cycle Settlement of Soft Ground with Creep Treated by Columns. Int J Geomech. https://doi.org/10.1061/IJGNAI.GMENG-7899

  49. Yapage NNS, Liyanapathirana DS (2014) A parametric study of geosynthetic-reinforced column-supported embankments. Geosynth Int 21(3):213–232. https://doi.org/10.1680/gein.14.00010

    Article  Google Scholar 

  50. Yapage NNS, Liyanapathirana DS, Kelly RB, Poulos HG, Leo CJ (2014) Numerical modeling of an embankment over soft ground improved with deep cement mixed columns: case history. J Geotechn Geoenviron Eng 140(11):04014062. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001165

    Article  Google Scholar 

  51. Yapage NNS, Liyanapathirana DS, Poulos HG, Kelly RB, Leo CJ (2015) Numerical modeling of geotextile-reinforced embankments over deep cement mixed columns incorporating strain-softening behavior of columns. Int J Geomechan 15(2):04014047. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000341

    Article  Google Scholar 

  52. Yapage NNS, Liyanapathirana DS (2019) A review of constitutive models for cement-treated clay. Int J Geotech Eng 13(6):525–537. https://doi.org/10.1080/19386362.2017.1370878

    Article  CAS  Google Scholar 

  53. Yin JH (2001) Stress-strain-strength characteristics of soft Hong Kong marine deposits without or with cement treatment. Lowland Technol Int 3:1–13

    Google Scholar 

  54. Yin JH (2004) Properties and behavior of a cement mixed Hong Kong marine clay and design applications. In: Proceedings of ground treatment, Hong Kong Geotechnical Society, Hong Kong, pp 97–105.

  55. Yin JH, Fang Z (2006) Physical modelling of consolidation behaviour of a composite foundation consisting of a cement-mixed soil column and untreated soft marine clay. Geotechnique 56(1):63–68. https://doi.org/10.1680/geot.2006.56.1.63

    Article  Google Scholar 

  56. Yin JH, Fang Z (2010) Physical modeling of a footing on soft soil ground with deep cement mixed soil columns under vertical loading. Mar Georesour Geotechnol 28(2):173–188. https://doi.org/10.1080/10641191003780872

    Article  Google Scholar 

  57. Yin JH, Graham J, Clark JI, Gao L (1994) Modelling unanticipated pore-water pressures in soft clays. Can Geotech J 31(5):773–778. https://doi.org/10.1139/t94-088

    Article  Google Scholar 

  58. Yu X, Zheng G, Zhou H, Chai J (2021) Influence of geosynthetic reinforcement on the progressive failure of rigid columns under an embankment load. Acta Geotech 16(9):3005–3012. https://doi.org/10.1007/s11440-021-01160-6

    Article  Google Scholar 

  59. Zaeske D (2001) Zur Wirkungsweise von unbewehrten und bewehrten mineralischen Tragschichten über pfahlartigen Gründungselementen. Versuchsanst. Geotechnik, Univ. Gh Kassel, Fachgebiet u

    Google Scholar 

  60. Zhang J, Zheng JJ, Chen BG, Yin JH (2013) Coupled mechanical and hydraulic modeling of a geosynthetic-reinforced and pile-supported embankment. Comput Geotech 52:28–37. https://doi.org/10.1016/j.compgeo.2013.03.003

    Article  Google Scholar 

  61. Zheng G, Yang X, Zhou H, Chai J (2019) Numerical modeling of progressive failure of rigid piles under embankment load. Can Geotech J 56(1):23–34. https://doi.org/10.1139/cgj-2017-0613

    Article  Google Scholar 

Download references

Acknowledgements

The work in this paper is supported by a Research Impact Fund (RIF) project (R5037-18) and three General Research Fund (GRF) projects (PolyU 15210020; PolyU 15210322; PolyU 15226722) from Research Grants Council (RGC) of Hong Kong Special Administrative Region Government of China. The authors also acknowledge the financial support from Research Institute for Land and Space of The Hong Kong Polytechnic University and three grants (CD82, CD7A) from The Hong Kong Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Bo Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, PC., Chen, WB., Feng, WQ. et al. Load transfer mechanism of geotextile-reinforced sand layer over semirigid column-improved soft soil. Acta Geotech. (2024). https://doi.org/10.1007/s11440-023-02213-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11440-023-02213-8

Keywords

Navigation