Skip to main content
Log in

Multiscale interactions of elastic anisotropy in unsaturated clayey rocks using a homogenization model

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The microstructure of a geomaterial plays a significant role in determining its macroscale properties. Most clay rocks have an anisotropic microstructure due to preferential orientation of the pores and mineral grains, which results in transversely isotropic mechanical properties. Their anisotropic microstructure is complex and spans multiple orders of magnitudes. The interactions between anisotropy at different scales in these rocks can give rise to emerging properties such as saturation-dependent elastic anisotropy. In this study, we develop a homogenization model with three levels of upscaling to capture the multiscale interactions of elastic anisotropy in unsaturated clay rocks. The model provides an enriched description of the elastic behavior of clay rocks during changes in the degree of saturation by bridging the nano-, micro- and macroscale microstructures. Stress-point simulations are presented to demonstrate the interactions between anisotropy at different spatial scales that result in the elastic behavior of clay rocks observed in the literature, including constant anisotropy, evolving anisotropy and a rotation of the principal orientation of anisotropy. The results highlight that constant and evolving elastic anisotropy can originate from the same microstructural features that either neutralize or enhance one another. Overall, the proposed model offers a quantitative link between anisotropy at multiple scales in clay rocks and its macroscopic anisotropic stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

The datasets generated during the course of this study are available from the corresponding author upon reasonable request.

References

  1. Baker DW, Chawla KS, Krizek RJ (1993) Compaction fabrics of pelites: experimental consolidation of kaolinite and implications for analysis of strain in slate. J Struct Geol 15(9–10):1123–1137

    Article  Google Scholar 

  2. Bennett KC, Berla LA, Nix WD, Borja RI (2015) Instrumented nanoindentation and 3D mechanistic modeling of a shale at multiple scales. Acta Geotechnica 10(1):1–14

    Article  Google Scholar 

  3. Bian K, Liu J, Zhang W, Zheng X, Ni S, Liu Z (2019) Mechanical behavior and damage constitutive model of rock subjected to water-weakening effect and uniaxial loading. Rock Mech Rock Eng 52(1):97–106

    Article  Google Scholar 

  4. Blatt H, Tracy RJ, Owens BE (2006) Petrology: igneous, sedimentary and metamorphic, 3rd edn. Freeman and Company, New York

    Google Scholar 

  5. Bobko C, Ulm FJ (2008) The nano-mechanical morphology of shale. Mech Mater 40:318–337

    Article  Google Scholar 

  6. Borja RI (2013) Plasticity modeling & computation. Springer, Berlin Heidelberg

    Book  MATH  Google Scholar 

  7. Borja RI, Choo J (2016) Cam-clay plasticity, part viii: a constitutive framework for porous materials with evolving internal structure. Computer Methods Appl Mech Eng 309:653–679

    Article  MathSciNet  MATH  Google Scholar 

  8. Borja RI, Yin Q, Zhao Y (2020) Cam-Clay plasticity. part IX: on the anisotropy, heterogeneity, and viscoplasticity of shale. Computer Methods Appl Mech Eng 360:112695

    Article  MathSciNet  MATH  Google Scholar 

  9. Burton GJ, Pineda JA, Sheng D, Airey D (2015) Microstructural changes of an undisturbed, reconstituted and compacted high plasticity clay subjected to wetting and drying. Eng Geol 193:363–373

    Article  Google Scholar 

  10. Cariou S, Dormieux L, Skoczylas F (2013) An original constitutive law for Callovo-Oxfordian argillite, a two-scale double-porosity material. Appl Clay Sci 80:18–30

    Article  Google Scholar 

  11. Carrier B, Wang L, Vandamme M, Pellenq RJM, Bornert M, Tanguy A, Van Damme H (2013) ESEM study of the humidity-induced swelling of clay film. Langmuir 29(41):12823–12833

    Article  Google Scholar 

  12. Casimir HB, Polder D (1948) The influence of retardation on the London-van der Waals forces. Phys Rev 73(4):360

    Article  MATH  Google Scholar 

  13. Chapman DL (1913) LI. A contribution to the theory of electrocapillarity. London, Edinburgh, Dublin Philosoph Magaz J Sci 25(148):475–481

    Article  MATH  Google Scholar 

  14. Chateau X, Dormieux L (2002) Micromechanics of saturated and unsaturated porous media. Int J Numer Anal Methods Geomech 26(8):831–844

    Article  MATH  Google Scholar 

  15. Chateau X, Moucheront P, Pitois O (2002) Micromechanics of unsaturated granular media. J Eng Mech 128(8):856–863

    Google Scholar 

  16. Chen Q, Nezhad MM, Fisher Q, Zhu HH (2016) Multi-scale approach for modeling the transversely isotropic elastic properties of shale considering multi-inclusions and interfacial transition zone. Int J Rock Mech Min Sci 84:95–104

    Article  Google Scholar 

  17. Choo J, White JA, Borja RI (2016) Hydromechanical modeling of unsaturated flow in double porosity media. Int J Geomech 16(6):D4016002

    Article  Google Scholar 

  18. Choo J, Semnani SJ, White JA (2021) An anisotropic viscoplasticity model for shale based on layered microstructure homogenization. Int J Numer Anal Methods Geomech 45(4):502–520

    Article  Google Scholar 

  19. Cosenza P, Fauchille AL, Prêt D, Hedan S, Giraud A (2019) Statistical representative elementary area of shale inferred by micromechanics. Int J Eng Sci 142:53–73

    Article  Google Scholar 

  20. Cudny M, Staszewska K (2021) A hyperelastic model for soils with stress-induced and inherent anisotropy. Acta Geotechnica 16:1983–2001

    Article  Google Scholar 

  21. Day-Stirrat RJ, Flemings PB, You Y, Aplin AC, van der Pluijm BA (2012) The fabric of consolidation in Gulf of Mexico mudstones. Mar Geol 295:77–85

    Article  Google Scholar 

  22. Della Vecchia G, Dieudonné AC, Jommi C, Charlier R (2015) Accounting for evolving pore size distribution in water retention models for compacted clays. Int J Numer Anal Methods Geomech 39(7):702–723

    Article  Google Scholar 

  23. Dormieux L, Lemarchand E, Coussy O (2003) Macroscopic and micromechanical approaches to the modelling of the osmotic swelling in clays. Transp Porous Media 50(1):75–91

    Article  Google Scholar 

  24. Dormieux L, Kondo D, Ulm FJ (2006) Microporomechanics. Wiley, New Jersey

    Book  MATH  Google Scholar 

  25. Dormieux L, Lemarchand E, Sanahuja J (2006) Comportement macroscopique des matériaux poreux à microstructure en feuillets. Comptes Rendus Mécanique 334(5):304–310

    Article  MATH  Google Scholar 

  26. Dormieux L, Sanahuja J, Maghous S (2006) Influence of capillary effects on strength of non-saturated porous media. Comptes Rendus Mécanique 334(1):19–24

    Article  MATH  Google Scholar 

  27. Douma LA, Dautriat J, Sarout J, Dewhurst DN, Barnhoorn A (2020) Impact of water saturation on the elastic anisotropy of the Whitby Mudstone United Kingdom. Geophysics 85(1):MR57–MR72

    Article  Google Scholar 

  28. Eghbalian M, Pouragha M, Wan R (2019) Micromechanical approach to swelling behavior of capillary-porous media with coupled physics. Int J Numer Anal Methods Geomech 43(1):353–380

    Article  Google Scholar 

  29. Eshelby JD (1961) Elastic inclusion and inhomogeneities. Prog Solid Mech 2:89–140

    MathSciNet  Google Scholar 

  30. Ferrari A, Favero V, Marschall P, Laloui L (2014) Experimental analysis of the water retention behaviour of shales. Int J Rock Mech Min Sci 72:61–70

    Article  Google Scholar 

  31. François B, Laloui L, Laurent C (2009) Thermo-hydro-mechanical simulation of ATLAS in situ large scale test in Boom Clay. Computers Geotech 36(4):626–40

    Article  Google Scholar 

  32. Freundlich H (1909) Kapillarchemie; eine Darstellung der Chemie dr Kolloide und verwandter Gebiete. Akademische Verlagsgellschft, Leipzig, Germany

    Google Scholar 

  33. Funatsu T, Seto M, Shimada H, Matsui K, Kuruppu M (2004) Combined effects of increasing temperature and confining pressure on the fracture toughness of clay bearing rocks. Int J Rock Mech Min Sci 41(6):927–938

    Article  Google Scholar 

  34. Ghanbari E, Dehghanpour H (2015) Impact of rock fabric on water imbibition and salt diffusion in gas shales. Int J Coal Geol 138:55–67

    Article  Google Scholar 

  35. Giraud A, Huynh QV, Hoxha D, Kondo D (2007) Effective poroelastic properties of transversely isotropic rock-like composites with arbitrarily oriented ellipsoidal inclusions. Mech Mater 39(11):1006–1024

    Article  Google Scholar 

  36. Griffith CA, Dzombak DA, Lowry GV (2011) Physical and chemical characteristics of potential seal strata in regions considered for demonstrating geological saline CO2 sequestration. Environ Earth Sci 64(4):925–948

    Article  Google Scholar 

  37. Gu X, Li Y, Hu J, Shi Z, Liang F, Huang M (2022) Elastic shear stiffness anisotropy and fabric anisotropy of natural clays. Acta Geotechnica 17:3229–3243

    Article  Google Scholar 

  38. Guéry AAC, Cormery F, Shao JF, Kondo D (2010) A comparative micromechanical analysis of the effective properties of a geomaterial: effect of mineralogical compositions. Computers Geotech 37(5):585–593

    Article  Google Scholar 

  39. Guo B, Ma L, Tchelepi HA (2018) Image-based micro-continuum model for gas flow in organic-rich shale rock. Adv Water Resour 122:70–84

    Article  Google Scholar 

  40. Harris NB, Miskimins JL, Mnich CA (2011) Mechanical anisotropy in the woodford shale, permian basin: origin, magnitude, and scale. Lead Edge 30(3):284–291

    Article  Google Scholar 

  41. Hornby BE, Schwartz LM, Hudson JA (1994) Anisotropic effective-medium modeling of the elastic properties of shales. Geophysics 59(10):1570–1583

    Article  Google Scholar 

  42. Hu D, Zhou H, Zhang F, Shao J, Zhang J (2013) Modeling of inherent anisotropic behavior of partially saturated clayey rocks. Computers Geotech 48:29–40

    Article  Google Scholar 

  43. Illankoon TN, Osada M (2016) Effect of saturation level on deformation and wave velocity of a transversely isotropic sedimentary rock. Int J JSRM 12(1):1–9

    Google Scholar 

  44. Ip SCY, Choo J, Borja RI (2021) Impacts of saturation-dependent anisotropy on the shrinkage behavior of clay rocks. Acta Geotechnica 16(11):3381–3400

    Article  Google Scholar 

  45. Ip SCY, Borja RI (2022) Evolution of anisotropy with saturation and its implications for the elastoplastic responses of clay rocks. Int J Numer Anal Methods Geomech 46(1):23–46

    Article  Google Scholar 

  46. Iwata S, Tabuchi T, Warkentin BP (2020) Soil-water interactions: mechanisms and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  47. Johansen TA, Ruud BO, Jakobsen M (2004) Effect of grain scale alignment on seismic anisotropy and reflectivity of shales. Geophys Prospect 52(2):133–149

    Article  Google Scholar 

  48. Keller LM, Holzer L, Wepf R, Gasser P (2011) 3D geometry and topology of pore pathways in Opalinus clay: implications for mass transport. Appl Clay Sci 52(1–2):85–95

    Article  Google Scholar 

  49. Komine H, Ogata N (1996) Prediction for swelling characteristics of compacted bentonite. Can Geotech J 33(1):11–22

    Article  Google Scholar 

  50. Law BE, Curtis JB (2002) Introduction to unconventional petroleum systems. AAPG Bull 86(11):1851–1852

    Google Scholar 

  51. Levin VM (1967) On the thermal expansion coefficients of heterogeneous materials. Mech Solids 1:88–94

    Google Scholar 

  52. Li B, Wong RC (2017) A mechanistic model for anisotropic thermal strain behavior of soft mudrocks. Eng Geol 228:146–157

    Article  Google Scholar 

  53. Liu X, Zeng W, Liang L, Xiong J (2016) Experimental study on hydration damage mechanism of shale from the Longmaxi formation in southern Sichuan Basin China. Petroleum 2(1):54–60

    Article  Google Scholar 

  54. London F (1937) The general theory of molecular forces. Trans Faraday Soc 33:8b–26

    Article  Google Scholar 

  55. Loucks RG, Reed RM, Ruppel SC, Hammes U (2012) Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull 96(6):1071–1098

    Article  Google Scholar 

  56. Louis L, Day-Stirrat R, Hofmann R, Saxena N, Schleicher AM (2018) Computation of effective elastic properties of clay from X-ray texture goniometry data. Geophysics 83(5):MR245–MR261

    Article  Google Scholar 

  57. Ma L, Fauchille AL, Dowey PJ, Pilz FF, Courtois L, Taylor KG, Lee PD (2017) Correlative multi-scale imaging of shales: a review and future perspectives. Geol Soc, London, Special Publ 454(1):175–199

    Article  Google Scholar 

  58. Ma L, Slater T, Dowey PJ, Yue S, Rutter EH, Taylor KG, Lee PD (2018) Hierarchical integration of porosity in shales. Scientif Rep 8(1):1–14

    Google Scholar 

  59. Ma T, Wei C, Yao C, Yi P (2020) Microstructural evolution of expansive clay during drying-wetting cycle. Acta Geotech 15:2355–2366

    Article  Google Scholar 

  60. Macht F, Eusterhues K, Pronk GJ, Totsche KU (2011) Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N\(_2\)) and -liquid (EGME) adsorption methods. Appl Clay Sci 53(1):20–26

    Article  Google Scholar 

  61. Mainka J, Murad MA, Moyne C, Lima SA (2013) A modified form of Terzaghi’s effective stress principle of unsaturated expansive clays derived from micromechanical analysis. In: Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics pp 1425–1434

  62. March A (1932) Mathematical theory on regulation according to the particle shape in affine deformation. Zeitschrift fur Kristallographie 81:285–297

    Google Scholar 

  63. McLamore R, Gray KE (1967) The mechanical behavior of anisotropic sedimentary rocks. J Eng Industr 89(1):62–73

    Article  Google Scholar 

  64. Mikhaltsevitch V, Lebedev M, Gurevich B (2018, June) The Effect of Water Saturation on the Elastic Properties of the Wellington Shale at Seismic Frequencies. In: 80th EAGE Conference and Exhibition 2018, Vol. 2018, No. 1, pp 1-5. European Association of Geoscientists & Engineers

  65. Millard A, Bond A, Nakama S, Zhang C, Barnichon JD, Garitte B (2013) Accounting for anisotropic effects in the prediction of the hydro-mechanical response of a ventilated tunnel in an argillaceous rock. J Rock Mech Geotech Eng 5(2):97–109

    Article  Google Scholar 

  66. Minardi A, Crisci E, Ferrari A, Laloui L (2016) Anisotropic volumetric behaviour of Opalinus clay shale upon suction variation. Géotech Lett 6(2):144–148

    Article  Google Scholar 

  67. Mishra PN, Zhang Y, Bhuyan MH, Scheuermann A (2020) Anisotropy in volume change behaviour of soils during shrinkage. Acta Geotechnica 15:3399–3414

    Article  Google Scholar 

  68. Mitchell JK, Soga K (2005) Fundamentals of soil behavior, vol 3. Wiley, New York

    Google Scholar 

  69. Neuzil CE (2013) Can shale safely host US nuclear waste? Eos,. Trans Am Geophys Union 94(30):261–262

    Article  Google Scholar 

  70. Nemat-Nasser S, Hori M (2013) Micromechanics: overall properties of heterogeneous materials. Elsevier, Amsterdam

    MATH  Google Scholar 

  71. Niandou H, Shao JF, Henry JP, Fourmaintraux D (1997) Laboratory investigation of the mechanical behaviour of Tournemire shale. Int J Rock Mech Min Sci 34(1):3–16

    Article  Google Scholar 

  72. Niemunis A, Staszewska K (2022) Pure cross-anisotropy for geotechnical elastic potentials. Acta Geotechnica 17:1699–1717

    Article  Google Scholar 

  73. Novich BE, Ring TA (1984) Colloid stability of clays using photon correlation spectroscopy. Clays Clay Miner 32(5):400–406

    Article  Google Scholar 

  74. Ortega JA, Ulm FJ, Abousleiman Y (2007) The effect of the nanogranular nature of shale on their poroelastic behavior. Acta Geotechnica 2(3):155–182

    Article  Google Scholar 

  75. Ortega JA, Ulm FJ, Abousleiman Y (2010) The effect of particle shape and grain-scale properties of shale: a micromechanics approach. Int J Numer Anal Methods Geomech 34(11):1124–1156

    MATH  Google Scholar 

  76. Owens WH (1973) Strain modification of angular density distributions. Tectonophysics 16:249–261

    Article  Google Scholar 

  77. Parnell WJ (2016) The Eshelby, Hill, moment and concentration tensors for ellipsoidal inhomogeneities in the Newtonian potential problem and linear elastostatics. J Elasticity 125(2):231–294

    Article  MathSciNet  MATH  Google Scholar 

  78. Pervukhina M, Gurevich B, Golodoniuc P, Dewhurst DN (2011) Parameterization of elastic stress sensitivity in shales. Geophysics 76:WA147–WA155

    Article  Google Scholar 

  79. Pham QT, Vales F, Malinsky L, Minh DN, Gharbi H (2007) Effects of desaturation-resaturation on mudstone. Phys Chem Earth, Parts A/B/C 32(8–14):646–655

    Article  Google Scholar 

  80. Prime N, Levasseur S, Miny L, Charlier R, Léonard A, Collin F (2015) Drying-induced shrinkage of Boom clay: an experimental investigation. Can Geotech J 53(3):396–409

    Article  Google Scholar 

  81. Revil A, Lu N (2013) Unified water isotherms for clayey porous materials. Water Resourc Res 49(9):5685–5699

    Article  Google Scholar 

  82. Sarout J, Esteban L, Delle Piane C, Maney B, Dewhurst DN (2014) Elastic anisotropy of Opalinus clay under variable saturation and triaxial stress. Geophys J Int 198(3):1662–1682

    Article  Google Scholar 

  83. Sayers CM (1994) The elastic anisotropy of shales. J Geophys Res-Solid Earth 99:767–774

    Article  Google Scholar 

  84. Seiphoori A, Ferrari A, Laloui L (2014) Water retention behaviour and microstructural evolution of MX-80 bentonite during wetting and drying cycles. Géotechnique 64(9):721–734

    Article  Google Scholar 

  85. Semnani SJ, White JA, Borja RI (2016) Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity. Int J Numer Anal Methods Geomech 40(18):2423–2449

    Article  Google Scholar 

  86. Semnani SJ, Borja RI (2017) Quantifying the heterogeneity of shale through statistical combination of imaging across scales. Acta Geotechnica 12:1193–1205

    Article  Google Scholar 

  87. Semnani SJ, White JA (2020) An inelastic homogenization framework for layered materials with planes of weakness. Computer Methods Appl Mech Eng 370:113221

    Article  MathSciNet  MATH  Google Scholar 

  88. Sevostianov I, Vernik L (2021) Micromechanics-based rock-physics model for inorganic shale. Geophysics 86(2):MR105–MR116

    Article  Google Scholar 

  89. Shen WQ, Shao JF (2015) A micromechanical model of inherently anisotropic rocks. Computers Geotech 65:73–79

    Article  Google Scholar 

  90. Simms PH, Yanful EK (2001) Measurement and estimation of pore shrinkage and pore distribution in a clayey till during soil-water characteristic curve tests. Can Geotech J 38(4):741–754

    Article  Google Scholar 

  91. Soe AKK, Osada M, Takahashi M, Sasaki T (2009) Characterization of drying-induced deformation behaviour of opalinus clay and tuff in no-stress regime. Environ Geol 58(6):1215–1225

    Article  Google Scholar 

  92. Sone H, Zoback MD (2013) Mechanical properties of shale-gas reservoir rocks–part 1: static and dynamic elastic properties and anisotropy. Geophysics 78(5):D381–D392

    Article  Google Scholar 

  93. Stavropoulou E, Andò E, Tengattini A, Briffaut M, Dufour F, Atkins D, Armand G (2019) Liquid water uptake in unconfined Callovo Oxfordian clay-rock studied with neutron and X-ray imaging. Acta Geotech 14:19–33

    Article  Google Scholar 

  94. Sun H, Mašín D, Najser J, Neděla V, Navrátilová E (2020) Fractal characteristics of pore structure of compacted bentonite studied by ESEM and MIP methods. Acta Geotechnica 15(6):1655–1671

    Article  Google Scholar 

  95. Togashi Y, Imano T, Osada M, Hosoda K, Ogawa K (2021) Principal strain rotation of anisotropic tuff due to continuous water-content variation. Int J Rock Mech Min Sci 138:104646

    Article  Google Scholar 

  96. Togashi Y, Mizuo K, Osada M, Yamabe T, Kameya H (2022) Evaluating changes in the degree of saturation in excavation disturbed zones using a stochastic differential equation. Computers Geotech 143:104598

    Article  Google Scholar 

  97. Ulm FJ, Delafargue A, Constantinides G (2005) Experimental microporomechanics. applied micromechanics of porous materials. Springer, Vienna

    MATH  Google Scholar 

  98. Valès F, Minh DN, Gharbi H, Rejeb A (2004) Experimental study of the influence of the degree of saturation on physical and mechanical properties in Tournemire shale (France). Appl Clay Sci 26:197–207

    Article  Google Scholar 

  99. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  100. Vasarhelyi B, Ledniczky K (1997) Constitutive equations for rocks under three-point bending load. Acta Technica 108(1997–99):581–598

    Google Scholar 

  101. Vasin RN, Wenk HR, Kanitpanyacharoen W, Matthies S, Wirth R (2013) Elastic anisotropy modeling of Kimmeridge shale. J Geophys Res: Solid Earth 118(8):3931–3956

    Article  Google Scholar 

  102. Vernik L, Nur A (1992) Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics 57(5):727–735

    Article  Google Scholar 

  103. Vernik L, Anantharamu V (2020) Estimating the elastic properties of mica and clay mineralsElastic properties of mica and clay minerals. Geophysics 85(2):MR83–MR95

    Article  Google Scholar 

  104. Wan M, Delage P, Tang AM, Talandier J (2013) Water retention properties of the Callovo-Oxfordian claystone. Int J Rock Mech Min Sci 64:96–104

    Article  Google Scholar 

  105. Wang JG, Ju Y, Gao F, Peng Y, Gao Y (2015) Effect of CO2 sorption-induced anisotropic swelling on caprock sealing efficiency. J Cleaner Prod 103:685–95

    Article  Google Scholar 

  106. Wei X, Duc M, Hattab M, Reuschlé T, Taibi S, Fleureau JM (2017) Effect of decompression and suction on macroscopic and microscopic behavior of a clay rock. Acta Geotechnica 12(1):47–65

    Article  Google Scholar 

  107. Wei X, Hattab M, Fleureau JM, Hu R (2013) Micro-macro-experimental study of two clayey materials on drying paths. Bull Eng Geol Environ 72(3):495–508

    Article  Google Scholar 

  108. Wenk HR, Lonardelli I, Franz H, Nihei K, Nakagawa S (2007) Preferred orientation and elastic anisotropy of illite-rich shale. Geophysics 72(2):E69–E75

    Article  Google Scholar 

  109. Wenk HR, Voltolini M, Mazurek M, Van Loon LR, Vinsot A (2008) Preferred orientations and anisotropy in shales: Callovo-Oxfordian shale (France) and Opalinus Clay (Switzerland). Clays Clay Miner 56:285–306

    Article  Google Scholar 

  110. Wild KM, Wymann LP, Zimmer S, Thoeny R, Amann F (2015) Water retention characteristics and state-dependent mechanical and petro-physical properties of a clay shale. Rock Mech Rock Eng 48(2):427–439

    Article  Google Scholar 

  111. Withers PJ (1989) The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials. Philosoph Magaz A 59(4):759–781

    Article  Google Scholar 

  112. Wong LNY, Maruvanchery V, Liu G (2016) Water effects on rock strength and stiffness degradation. Acta Geotechnica 11(4):713–737

    Article  Google Scholar 

  113. Yang DS, Bornert M, Chanchole S, Gharbi H, Valli P, Gatmiri B (2012) Dependence of elastic properties of argillaceous rocks on moisture content investigated with optical full-field strain measurement techniques. Int J Rock Mech Min Sci 53:45–55

    Article  Google Scholar 

  114. Yanuka M, Dullien FAL, Elrick DE (1986) Percolation processes and porous media: I. geometrical and topological model of porous media using a three-dimensional joint pore size distribution. J Colloid Interface Sci 112(1):24–41

    Article  Google Scholar 

  115. Yanuka M (1989) Percolation processes and porous media: III. prediction of the capillary hysteresis loop from geometrical and topological information of pore space. J Colloid Interface Sci 127(1):48–58

    Article  Google Scholar 

  116. Yin Q, Liu Y, Borja RI (2021) Mechanisms of creep in shale from nanoscale to specimen scale. Computers Geotech 136:104138

    Article  Google Scholar 

  117. Yong RN, Warkentin BP (1975) Soils properties and behavior. Elsevier, Amsterdam

    Google Scholar 

  118. Yurikov A, Lebedev M, Pervukhina M, Gurevich B (2019) Water retention effects on elastic properties of Opalinus shale. Geophys Prospect 67(4):984–996

    Article  Google Scholar 

  119. Zhang F, Xie SY, Hu DW, Shao JF, Gatmiri B (2012) Effect of water content and structural anisotropy on mechanical property of claystone. Appl Clay Sci 69:79–86

    Article  Google Scholar 

  120. Zhang Q, Choo J, Borja RI (2019) On the preferential flow patterns induced by transverse isotropy and non-Darcy flow in double porosity media. Computer Methods Appl Mech Eng 353:570–592

    Article  MathSciNet  MATH  Google Scholar 

  121. Zhang Q, Fan X, Chen P, Ma T, Zeng F (2020) Geomechanical behaviors of shale after water absorption considering the combined effect of anisotropy and hydration. Eng Geol 269:105547

    Article  Google Scholar 

  122. Zhang Y, Xie L, Zhao P, He B (2020) Study of the quantitative effect of the depositional layering tendency of inclusions on the elastic anisotropy of shale based on two-step homogenization. Geophys J Int 220(1):174–189

    Article  Google Scholar 

  123. Zhang Q, Borja RI (2021) Poroelastic coefficients for anisotropic single and double porosity media. Acta Geotechnica 16(10):3013–3025

    Article  Google Scholar 

  124. Zhao Y, Semnani SJ, Yin Q, Borja RI (2018) On the strength of transversely isotropic rocks. Int J Numer Anal Methods Geomech 42(16):1917–1934

    Article  Google Scholar 

  125. Zhao Y, Borja RI (2020) A continuum framework for coupled solid deformation-fluid flow through anisotropic elastoplastic porous media. Computer Methods Appl Mech Eng 369:113225

    Article  MathSciNet  MATH  Google Scholar 

  126. Zhao Y, Borja RI (2021) Anisotropic elastoplastic response of double-porosity media. Computer Methods Appl Mech Eng 380:113797

    Article  MathSciNet  MATH  Google Scholar 

  127. Zhao Y, Borja RI (2022) A double-yield-surface plasticity theory for transversely isotropic rocks. Acta Geotechnica 17:5201. https://doi.org/10.1007/s11440-022-01605-6

    Article  Google Scholar 

  128. Zhou Z-H, Wang H-N, Jiang M-J (2021) Macro- and micro-mechanical relationship of the anisotropic behaviour of a bonded ellipsoidal particle assembly in the elastic stage. Acta Geotechnica 16:3899–3921

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the U.S. National Science Foundation under Award Number CMMI-1914780.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo I. Borja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Hill’s tensor

Appendix A. Hill’s tensor

The expression of the Hill’s tensor \(\mathbb {P}\) for aligned oblate spheroid inclusions and randomly distributed oblate spheroid inclusions used in the proposed homogenization model are presented below. The Hill’s tensor characterizes the interaction between the inclusions and the host matrix. It is dependent on the stiffness of the host matrix, the shape of the inclusions and in a transversely isotropic matrix, the orientation of the inclusions in the host matrix.

1.1 A1. Aligned oblate spheroidal inclusions

The Eshelby tensor \(\mathbb {S}\) for an oblate spheroid aligned along the bedding plane in a transversely isotropic host medium was derived by Withers [111].

$$\begin{aligned} \begin{aligned} \mathbb {S}_{11} =&\sum _{i=1}^{2} (2\mathbb {C}_{44}(1+k_i)\nu _i^2-\mathbb {C}_{66})A_i\nu _iI_1(\nu _i)\\&+ \frac{D\mathbb {C}_{66}I_1(\nu _3)}{2}\\ \mathbb {S}_{12} =&\sum _{i=1}^{2} (2\mathbb {C}_{44}(1+k_i)\nu _i^2-3\mathbb {C}_{66})A_i\nu _iI_1(\nu _i)\\&- \frac{D\mathbb {C}_{66}I_1(\nu _3)}{2}\\ \mathbb {S}_{33} =&2\sum _{i=1}^{2} (\mathbb {C}_{13} - \mathbb {C}_{33}k_i\nu _i^2)\nu _i^3k_iA_iI_2(\nu _i)\\ \mathbb {S}_{13} =&2\sum _{i=1}^{2} (\mathbb {C}_{13} - \mathbb {C}_{33}k_i\nu _i^2)\nu _iA_iI_1(\nu _i)\\ \mathbb {S}_{31} =&2\sum _{i=1}^{2} \mathbb {C}_{44}\nu _i^5k_iA_i(1+k_i)I_2(\nu _i) \\&-\mathbb {C}_{66}k_i\nu _i^3A_iI_2(\nu _i)\\ \mathbb {S}_{44} =&\frac{\mathbb {C}_{44}}{2}\sum _{i=1}^{2} \nu _i^3A_i(1+k_i)(I_2(\nu _i)-2k_iI_1(\nu _i)) \\&+\frac{\mathbb {C}_{44}}{4}DI_2(\nu _3)\nu _3^2 \end{aligned} \end{aligned}$$
(31)

where

$$\begin{aligned} \begin{aligned} \mathbb {C}_{13}^*&= \sqrt{\mathbb {C}_{11}\mathbb {C}_{13}}\\ \nu _1&= \sqrt{\frac{(\mathbb {C}_{13}^*-\mathbb {C}_{13}) (\mathbb {C}_{13}^*+\mathbb {C}_{13}+\mathbb {C}_{44})}{4\mathbb {C}_{33}\mathbb {C}_{44}}}\\&\quad +\sqrt{\frac{(\mathbb {C}_{13}^*+\mathbb {C}_{13})(\mathbb {C}_{13}^*-\mathbb {C}_{13} -\mathbb {C}_{44})}{4\mathbb {C}_{33}\mathbb {C}_{44}}}\\ \nu _2&= \sqrt{\frac{(\mathbb {C}_{13}^*-\mathbb {C}_{13}) (\mathbb {C}_{13}^*+\mathbb {C}_{13}+\mathbb {C}_{44})}{4\mathbb {C}_{33}\mathbb {C}_{44}}}\\&\quad -\sqrt{\frac{(\mathbb {C}_{13}^*+\mathbb {C}_{13})(\mathbb {C}_{13}^*-\mathbb {C}_{13} -\mathbb {C}_{44})}{4\mathbb {C}_{33}\mathbb {C}_{44}}}\\ \nu _3&= \sqrt{\frac{\mathbb {C}_{66}}{\mathbb {C}_{44}}}\\ D&=\frac{1}{4\pi g_0 \nu _3}\\ A_1&=-\frac{\mathbb {C}_{44}-\mathbb {C}_{33}\nu _1^2}{8\pi \mathbb {C}_{33}\mathbb {C}_{44} (\nu _1^2 - \nu _2^2) \nu _1^2}\\ A_2&= \frac{\mathbb {C}_{44}-\mathbb {C}_{33}\nu _2^2}{8\pi \mathbb {C}_{33}\mathbb {C}_{44} (\nu _1^2 - \nu _2^2) \nu _2^2}\\ k_i&= \frac{\mathbb {C}_{11}/\nu _i^2-\mathbb {C}_{44}}{\mathbb {C}_{13}+\mathbb {C}_{44}}\\ I_1(\nu _i)&= \frac{2\pi \xi }{(\chi _i)^{3/2}}\Big (\text{tan}^{-1} \frac{\sqrt{\chi _i}}{\nu _i \xi }- \nu _i \xi \sqrt{\chi _i}\Big )\\ I_2(\nu _i)&= -\frac{4\pi \xi }{(\chi _i)^{3/2}}\Big (\text{tan}^{-1} \frac{\sqrt{\chi _i}}{\nu _i \xi }- \nu _i \xi \sqrt{\chi _i}\Big )\\ \chi _i&= 1-\nu _i^2 \xi ^2 \end{aligned} \end{aligned}$$
(32)

The Hill’s tensor can then be expressed as [77]

$$\begin{aligned} \begin{aligned} \mathbb {P}_{11}&= \frac{\mathbb {S}_{11}-\mathbb {S}_{12}}{2\mathbb {C}_{66}}+\mathbb {P}_{12}\\ \mathbb {P}_{12}&= (\frac{\mathbb {C}_{33}(\mathbb {S}_{11}+\mathbb {S}_{12})-2\mathbb {C}_{13}\mathbb {S}_{33}}{4((\mathbb {C}_{11}-\mathbb {C}_{66})\mathbb {C}_{33}-\mathbb {C}_{13}^2)} - \frac{\mathbb {S}_{11}-\mathbb {S}_{12}}{4\mathbb {C}_{66}})\\ \mathbb {P}_{33}&= \frac{(\mathbb {C}_{11}-\mathbb {C}_{66})\mathbb {S}_{33}-\mathbb {C}_{13}\mathbb {S}_{31}}{((\mathbb {C}_{11}-\mathbb {C}_{66})\mathbb {C}_{33}-\mathbb {C}_{13}^2)}\\ \mathbb {P}_{13}&= \frac{\mathbb {C}_{33}\mathbb {S}_{31}-\mathbb {C}_{13}\mathbb {S}_{33}}{2((\mathbb {C}_{11}-\mathbb {C}_{66})\mathbb {C}_{33}-\mathbb {C}_{13}^2)}\\ \mathbb {P}_{44}&= \frac{\mathbb {S}_{44}}{2\mathbb {C}_{44}}\\ \mathbb {P}_{66}&= \frac{\mathbb {S}_{66}}{2\mathbb {C}_{66}} \end{aligned} \end{aligned}$$
(33)

1.2 A2. Aligned oblate spheroidal inclusions

The Hill tensor for randomly oriented oblate spheroids in a transversely isotropic host medium is more complex and requires the use of numerical integration to compute [35]. The dilute concentration tensor \(\mathbb {A}_d\) can be obtained from the following integration on a unit sphere

$$\begin{aligned} \begin{aligned} \overline{\mathbb {A}}_d = \frac{1}{4\pi }\int _{\psi =0}^{2\pi }\int _{\theta =0}^{2\pi } \mathbb {A}_d(\theta ,\psi ) \text{d}\theta \text{d}\psi \end{aligned} \end{aligned}$$
(34)

where \(\psi\) and \(\theta\) are spherical coordinates and

$$\begin{aligned} \begin{aligned} \mathbb {A}_d = (\mathbb {I}+\mathbb {P}(\theta ,\psi ):(\mathbb {C}^{p}-\mathbb {C}^{s}))^{-1}. \end{aligned} \end{aligned}$$
(35)

The Hill tensor can be expressed as an integration over the spherical coordinates \(\varphi\) and \(\zeta\)

$$\begin{aligned} \begin{aligned} \mathbb {P}_{ijkl} =&\int _{0}^{2\pi }\int _{0}^{2\pi } (p_l g_{kij} + p_l g_{kji} \\&+ p_k g_{lij} + p_k g_{lji})\sin (\varphi ) \text{d}\zeta \text{d}\varphi \end{aligned} \end{aligned}$$
(36)

with the following components [29, 35, 75, 111]

$$\begin{aligned} \begin{aligned} p_1&= \frac{\xi ^2l_1}{\eta } \\ p_2&= \frac{(1+\xi ^2)l_2 + (1-\xi ^2)(l_3 \sin (2\theta )-l_2 \cos (2\theta ))}{2\eta } \\ p_3&= \frac{(1+\xi ^2)l_3 + (1-\xi ^2)(l_3 \cos (2\theta )+l_2 \sin (2\theta ))}{2\eta } \end{aligned} \end{aligned}$$
(37)

where

$$\begin{aligned} \begin{aligned} \eta&= \xi ^2l_1^2+(l_3 \cos (\theta )+l_2 \sin (\theta ))^2 \\&\quad +\xi ^2(l_2 \cos (\theta )+l_3 \sin (\theta ))^2 \end{aligned} \end{aligned}$$
(38)

and

$$\begin{aligned} \begin{aligned} g_{111} =&-2\sum _{i=1}^{2}\frac{\nu _iA_il_1(-8\frac{\bar{\nu }_{i23}}{\rho ^2}+\frac{\bar{\nu }_{i13}}{R_i^2}-3l_2^2+2\nu _i^2l_3^2)}{\rho ^4 R_i} \\ {}&- \frac{Dl_1(8\frac{\bar{\nu }_{323}}{\rho ^2}+\frac{\bar{\nu }_{323}}{R_3^2}-l_1^2+2l_2^2-2\nu _3^2l_3^2)}{\rho ^4 R_3}\\ g_{112} =&-2\sum _{i=1}^{2}\frac{\nu _iA_il_2(8\frac{\bar{\nu }_{i13}}{\rho ^2}+\frac{\bar{\nu }_{i13}}{R_i^2}+2l_1^2-l_2^2-2\nu _i^2l_3^2)}{\rho ^4 R_i} \\ {}&- \frac{Dl_2(-8\frac{\bar{\nu }_{313}}{\rho ^2}+\frac{\bar{\nu }_{323}}{R_3^2}-3l_1^2+2\nu _3^2l_3^2)}{\rho ^4 R_3}\\ g_{113} =&2\sum _{i=1}^{2}\frac{\nu _i^3A_il_3(2l_1^2-l_2^2 -\frac{\bar{\nu }_{i13}}{R_i^2})}{\rho ^4 R_i} \\ {}&- \frac{D\nu _3^2l_3(l_1^2-2l_2^2 +\frac{\bar{\nu }_{323}}{R_3^2})}{\rho ^4 R_3}\\ g_{121} =&-2\sum _{i=1}^{2}\frac{\nu _iA_il_2(8\frac{\bar{\nu }_{i13}}{\rho ^2}+\frac{\bar{\nu }_{i13}}{R_i^2}+2l_1^2-l_2^2-2\nu _i^2l_3^2)}{\rho ^4 R_i} \\ {}&+ \frac{Dl_2(8\frac{\bar{\nu }_{313}}{\rho ^2}+\frac{\bar{\nu }_{313}}{R_3^2}+2l_1^2-l_2^2-2\nu _3^2l_3^2)}{\rho ^4 R_3}\\ g_{123} =&2\sum _{i=1}^{2}\frac{\nu _i^3A_il_1l_2l_3(3\rho ^2 + 2\nu _i^2l_3^2)}{\rho ^4R_i^3}\\&- \frac{D\nu _3^2l_1l_2l_3(3\rho ^2 + 2\nu _3^2l_3^2)}{\rho ^4R_3^3}\\ g_{131} =&\sum _{i=1}^{2}\frac{\nu _i^2A_il_3(1-2\frac{l_1^2}{\rho ^2}-\frac{l_1^2}{R_i^2})}{\rho ^2 R_i}\\ g_{312} =&2\sum _{i=1}^{2}\frac{k_i\nu _i^3A_il_1l_2l_3(\frac{2}{\rho ^2}+\frac{1}{R_i^2})}{\rho ^2 R_i}\\ g_{313} =&-2\sum _{i=1}^{2}\frac{k_i\nu _i^3A_il_1}{R_i^3}\\ g_{331} =&\sum _{i=1}^{2}\frac{k_i\nu _i^2A_il_3}{R_i^3}\\ g_{333} =&\sum _{i=1}^{2}\frac{k_i\nu _i^4A_il_3}{R_i^3} \end{aligned} \end{aligned}$$
(39)

where

$$\begin{aligned} \begin{aligned} \rho&= \sqrt{l_1^2+l_2^2} \\ R_i^2&= \rho ^2 + \nu _i^2l_3^2\\ l_1&= \cos (\zeta )\sin (\varphi )\\ l_2&= \sin (\zeta )\sin (\varphi )\\ l_3&= \cos (\varphi )\\ \bar{\nu }_{imn}&= \nu _i^2l_m^2l_n^2 \end{aligned} \end{aligned}$$
(40)

and the remaining variables are the same as in Appendix A1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ip, S.C.Y., Borja, R.I. Multiscale interactions of elastic anisotropy in unsaturated clayey rocks using a homogenization model. Acta Geotech. 18, 2289–2307 (2023). https://doi.org/10.1007/s11440-022-01784-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-022-01784-2

Keywords

Navigation