Skip to main content
Log in

Large strain consolidation of dredged slurries considering clogging effect with coupled vertical–radial flow

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Dredged slurries improved by vacuum preloading methods were found to be still weak generally after the pore water drainage finished. Three reasons, including nonuniform consolidation, soil particles migration and blockage of the drain filter, have been proposed to explain the failure. Thus, finding out the principle factor is essential for modifying the vacuum improvement method effectively. In this paper, a large strain consolidation model with coupled vertical–radial flow is built to investigate the effects of the three factors. Blockage at the drain and clogging in the soil is found to be the main factors. Besides, the clogging in the soil shows a significant influence on the distribution of pore water pressure along the radius. Then, the consolidation behaviors and variations of water drainage direction are also analyzed under different upper boundary conditions compared to the results from a laboratory test. On that base, the hard shell boundary is found to be better in simulating the upper boundary conditions in the membrane system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13
Fig. 14

Similar content being viewed by others

References

  1. Bao SF, Lou Y, Dong ZL, Mo HH, Chen PS, Zhou RB (2014) Causes and countermeasures for vacuum consolidation failure of newly-dredged mud foundation [In Chinese]. Chin J Geotech Eng 36(7):1350–1359. https://doi.org/10.11779/CJGE201407020

    Article  Google Scholar 

  2. Bergado DT, Manivannan R, Balasubramaniam AS (1996) Filtration criteria for prefabricated vertical drain geotextile filter jackets in soft Bangkok clay. Geosynth Int 3(1):63–83. https://doi.org/10.1680/gein.3.0054

    Article  Google Scholar 

  3. Cai YQ (2021) Consolidation mechanism of vacuum preloading for dredged slurry and anti-clogging method for drains. Chin J Geotech Eng 43(2):201–225

    Google Scholar 

  4. Cao YP, Wang XS, Du L, Ding JW, Deng YF (2014) A method of determining nonlinear large strain consolidation parameters of dredged clays. Water Sci Eng 7(2):218–226. https://doi.org/10.3882/j.issn.1674-2370.2014.02.009

    Article  Google Scholar 

  5. Cao Y, Xu J, Bian X, Xu G (2019) Effect of clogging on large strain consolidation with prefabricated vertical drains by vacuum pressure. Ksce J Civ Eng 23(10):4190–4200. https://doi.org/10.1007/s12205-019-1884-2

    Article  Google Scholar 

  6. Chai JC, Fu HT, Wang J, Shen SL (2020) Behaviour of a PVD unit cell under vacuum pressure and a new method for consolidation analysis. Comput Geotech 120:103415. https://doi.org/10.1016/j.compgeo.2019.103415

    Article  Google Scholar 

  7. Chai J, Hong Z, Shen S (2010) Vacuum-drain consolidation induced pressure distribution and ground deformation. Geotext Geomembr 28(6):525–535. https://doi.org/10.1016/j.geotexmem.2010.01.003

    Article  Google Scholar 

  8. Chai JC, Miura N (1999) Investigation of factors affecting vertical drain behavior. J Geotech Geoenviron 125(3):216–226. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:3(216)

    Article  Google Scholar 

  9. Chai JC, Miura N, Nomura T (2004) Effect of hydraulic radius on long-term drainage capacity of geosynthetics drains. Geotext Geomembranes 22(1–2):3–16. https://doi.org/10.1016/S0266-1144(03)00048-7

    Article  Google Scholar 

  10. Cheng WZ, Guan YF, Tang TZ (2010) Discussion on treatment 517 technology for land reclamation [In Chinese]. Soil Eng Found 24(5):1–3. https://doi.org/10.3969/j.issn.1004-3152.2010.05.001

    Article  Google Scholar 

  11. Chu J, Yan SW, Yang H (2000) Soil improvement by the vacuum preloading method for an oil storage station. Geotechnique 50(6):625–632. https://doi.org/10.1680/geot.2000.50.6.625

    Article  Google Scholar 

  12. Deng Y, Liu L, Cui YJ, Feng Q, Chen X, He N (2019) Colloid effect on clogging mechanism of hydraulic reclamation mud improved by vacuum preloading. Can Geotech J 56(5):611–620. https://doi.org/10.1080/1064119X.2018.1522398

    Article  Google Scholar 

  13. Deng YB, Liu GB, Indraratna B, Rujikiatkamjorn C, Xie KH (2017) Model test and theoretical analysis for soft soil foundations improved by prefabricated vertical drains. Int J Geomech 17(1):04016045. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000711

    Article  Google Scholar 

  14. Fang Y, Guo L, Huang J (2019) Mechanism test on inhomogeneity of dredged fill during vacuum preloading consolidation. Mar Georesour Geotec 37(8):1007–1017. https://doi.org/10.1080/1064119X.2018.1522398

    Article  Google Scholar 

  15. Fu H, Cai Y, Wang J, Wang P (2017) Experimental study on the combined application of vacuum preloading–variable-spacing electro-osmosis to soft ground improvement. Geosynth Int 24(1):72–81. https://doi.org/10.1680/jgein.16.00016

    Article  Google Scholar 

  16. Geng XY, Indraratna B, Rujikiatkamjorn C (2011) The effectiveness of partially penetrating vertical drains under a combined surcharge and vacuum preloading. Can Geotech J 48(6):970–983. https://doi.org/10.1139/t11-011

    Article  Google Scholar 

  17. Geng X, Yu HS (2017) A large-strain radial consolidation theory for soft clays improved by vertical drains. Géotechnique 67(11):1020–1028. https://doi.org/10.1680/jgeot.15.T.013

    Article  Google Scholar 

  18. Gibson RE, England GL, Hussey MJL (1967) The theory of one-dimensional consolidation of saturated clays: 1 finite non-linear consolidation of thin homogeneous layers. Geotechnique 17(3):261–273

    Article  Google Scholar 

  19. Giroud JP (2005) Quantification of geosynthetic behavior. Geosynth Int 12(1):2–27. https://doi.org/10.1680/gein.2005.12.1.2

    Article  Google Scholar 

  20. Jiang HH, Zhao YM, Liu GN, Zhao WB (2011) Large strain consolidation of soft ground with vertical drains. Chin J Geotech Eng 33(2):302–308

    Google Scholar 

  21. Kjellman W (1952) Consolidation of clay soil by means of atmospheric pressure. In: Proceedings of conference on soil stabilization. Massachusetts Institute of Technology, Boston, pp. 258–263

  22. Lei H, Lu H, Liu J, Zheng G (2017) Experimental study of the clogging of dredger fills under vacuum preloading. Int J Geomech 17(12):04017117. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001028

    Article  Google Scholar 

  23. Li J, Chen H, Yuan X, Shan W (2020) Analysis of the effectiveness of the step vacuum preloading method: a case study on high clay content dredger fill in Tianjin, China. J Marine Sci Eng 8(1):38

    Article  Google Scholar 

  24. Liu S, Cai Y, Sun H, Geng X, Shi L, Pan X (2021) Consolidation considering clogging effect under uneven strain assumption. Int J Geomech 21(1):04020239. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001898

    Article  Google Scholar 

  25. Liu SJ, Geng XY, Sun HL, Cai YQ, Pan XD, Shi L (2019) Nonlinear consolidation of vertical drains with coupled radial-vertical flow considering time and depth dependent vacuum pressure. Int J Numer Anal Met 43(4):767–780. https://doi.org/10.1061/10.1002/nag.2888

    Article  Google Scholar 

  26. Nguyen BP, Kim YT (2019) Radial consolidation of PVD-installed normally consolidated soil with discharge capacity reduction using large-strain theory. Geotext Geomembr 47(2):243–254. https://doi.org/10.1016/j.geotexmem.2019.01.008

    Article  Google Scholar 

  27. Ni P, Xu K, Mei G, Zhao Y (2019) Effect of vacuum removal on consolidation settlement under a combined vacuum and surcharge preloading. Geotext Geomembr 47(1):12–22. https://doi.org/10.1016/j.geotexmem.2018.09.004

    Article  Google Scholar 

  28. Pan XD, Zhou LM, Sun HL, Cai YQ, Shi L, Yuan ZH (2020) Vacuum preloading test for high moisture content slurry using particle image velocimetry. J ZheJiang Univ Eng Sci 54(6):1078–1085

    Google Scholar 

  29. Pu HF, Yang P, Zheng JJ, Zhou Y, Chen JN (2020) Piecewise-linear large-strain model for vacuum-assisted radial consolidation with non-Darcian flow and general constitutive relationships. Comput Geotech 118:103327. https://doi.org/10.1016/j.compgeo.2019.103327

    Article  Google Scholar 

  30. Rixner JJ, Kraemer SR, Smith AD (1986) Prefabricated vertical drains, vol. I: engineering guidelines (No. FHWA/RD-86/168). Turner-Fairbank Highway Research Center.

  31. Sun LQ, Yan SW, Li W, Wu KB (2011) Study of super-soft soil vacuum preloading model test. Rock Soil Mech 32(4):984–990

    Google Scholar 

  32. Tang TZ, Huang JQ, Guan YF, Chen HB, Cheng WZ (2010) Experimental study on dredged fill sludge improved by vacuum preloading. [In Chinese.]. Port Waterw Eng 440:115–122. https://doi.org/10.3969/j.issn.1002-4972.2010.04.027

    Article  Google Scholar 

  33. Wang J, Ding J, Wang H, Mou C (2020) Large-strain consolidation model considering radial transfer attenuation of vacuum pressure. Comput Geotech 122:103498. https://doi.org/10.1016/j.compgeo.2020.103498

    Article  Google Scholar 

  34. Wang P, Han Y, Zhou Y, Wang J, Cai Y, Xu F, Pu H (2020) Apparent clogging effect in vacuum-induced consolidation of dredged soil with prefabricated vertical drains. Geotext Geomembr 48(4):524–531. https://doi.org/10.1016/j.geotexmem.2020.02.010

    Article  Google Scholar 

  35. Xue YQ, Xie CH (2007) Numerical simulation of groundwater. Science Press, Beijing ((In Chinese))

    Google Scholar 

  36. Zeng LL, Cai YQ, Cui YJ, Hong ZS (2020) Hydraulic conductivity of reconstituted clays based on intrinsic compression. Geotechnique 70(3):268–275. https://doi.org/10.1680/jgeot.18.P.096

    Article  Google Scholar 

  37. Zeng LL, Hong ZS, Cui YJ (2016) Time-dependent compression behaviour of dredged clays at high water contents in China. Appl Clay Sci 123:320–328. https://doi.org/10.1016/j.clay.2016.01.039

    Article  Google Scholar 

  38. Zhou Y, Chai JC (2017) Equivalent ‘smear’ effect due to non-uniform consolidation surrounding a PVD. Geotechnique 67(5):410–419. https://doi.org/10.1680/jgeot.16.P.087

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by funding from the National Nature Science Foundation of China (grant numbers 52078464, 51978533, 51978303, 51678266, 52078236, 51878313 and 51620105008), European Union’s Horizon 2020 research and innovation program Marie Skłodowska–Curie Actions Research and Innovation Staff Exchange (RISE) under grant agreement (grant number 778360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix I

Appendix I

To simplify the equations, reduced coordinates system is used in the solution as the volume of soil particles is constant in the consolidation. Then, the governing equations are transferred to

$$\left( {1 + e} \right)\frac{\partial }{\partial r}\left[ {A\frac{\partial e}{{\partial r}}} \right] + B\frac{\partial e}{{\partial r}} + \frac{\partial }{\partial z}\left( {C\frac{\partial e}{{\partial z}}} \right) + D\frac{\partial e}{{\partial z}} = \frac{\partial e}{{\partial t}}$$
(A.1)

where

$$\begin{gathered} 0 \le r \le r_{{\text{w}}} : \, A = - \frac{{k_{{\text{w}}} }}{{\gamma_{{\text{w}}} }}\frac{{{\text{d}}\sigma^{\prime}}}{{{\text{d}}e}},B = \frac{{\left( {1 + e} \right)}}{r}A,C = \frac{{k_{{\text{w}}} }}{{\gamma_{{\text{w}}} \left( {1 + e} \right)}}\frac{{{\text{d}}\sigma^{\prime}}}{{{\text{d}}e}},D = \left( {1 - G_{{\text{s}}} } \right)k_{{\text{w}}} \frac{{\text{d}}}{{{\text{d}}e}}\left[ {\frac{1}{1 + e}} \right] \hfill \\ r_{{\text{w}}} \le r \le r_{{\text{c}}} : \, A = - \frac{{k_{{{\text{ch}}}} }}{{\gamma_{{\text{w}}} }}\frac{{{\text{d}}\sigma^{\prime}}}{{{\text{d}}e}},B = \frac{{\left( {1 + e} \right)}}{r}A,C = \frac{{k_{{{\text{cv}}}} }}{{\gamma_{{\text{w}}} \left( {1 + e} \right)}}\frac{{{\text{d}}\sigma^{\prime}}}{{{\text{d}}e}},D = \left( {1 - G_{{\text{s}}} } \right)\frac{{\text{d}}}{{{\text{d}}e}}\left[ {k_{{{\text{cv}}}} \frac{1}{1 + e}} \right] \hfill \\ r_{{\text{c}}} \le r \le r_{{\text{e}}} : \, A = - \frac{{k_{{\text{h}}} }}{{\gamma_{{\text{w}}} }}\frac{{{\text{d}}\sigma^{\prime}}}{{{\text{d}}e}},B = \frac{{\left( {1 + e} \right)}}{r}A,C = \frac{{k_{{\text{v}}} }}{{\gamma_{{\text{w}}} \left( {1 + e} \right)}}\frac{{{\text{d}}\sigma^{\prime}}}{{{\text{d}}e}},D = \left( {1 - G_{{\text{s}}} } \right)\frac{{\text{d}}}{{{\text{d}}e}}\left[ {k_{{\text{v}}} \frac{1}{1 + e}} \right] \hfill \\ \end{gathered}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Sun, H., Zheng, J. et al. Large strain consolidation of dredged slurries considering clogging effect with coupled vertical–radial flow. Acta Geotech. 18, 3177–3192 (2023). https://doi.org/10.1007/s11440-022-01743-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-022-01743-x

Keywords

Navigation