Skip to main content
Log in

Creep characteristics of calcareous coral sand in the South China Sea

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

In recent years, a series of lands have been built or enlarged on the top of some natural coral reefs by the means of reclamation in the South China Sea (SCS). The reclamation material used is the calcareous coral sand extracted from nearby lagoons. As a kind of special geotechnical material, its mechanical characteristics are different from that of conventional terrestrial soil. It is of great significance to study the time-dependent creep characteristics of the calcareous coral sand for evaluating the post-construction settlement of some important structures built on these reclaimed lands. In this study, a series of drained triaxial tests are conducted to study the long-term creep characteristics of calcareous coral sand under different loading types (single-level and multi-level tests). Based on the experimental results, it is found that calcareous coral sand indeed shows considerable time-dependent creep deformation under a constant stress state. There are two development modes for the volumetric strain versus axial strain curves during creeping under single-level loading; while there is only one development mode under multi-level loading. It is shown that the unfavorable effect of the air entrapped in the micro inner cavities of coral sand particles leads to a spurious volumetric strain measured in the middle and late stages of creep. The determination of the particle size distribution after the tests shows that the relative slippage and rearrangements of sand particles play the leading role in the creep deformation process for calcareous coral sand. The effect of sand particle breakage on creeping is not obvious. Based on these test data, a novel four-parameter mathematical model is proposed to model the creep characteristics of the calcareous coral sand in the South China Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

data availability

Depending on the request from the corresponding author.

References

  1. Andò E, Dijkstra J, Roubin E, Dano C, Boller E (2019) A peek into the origin of creep in sand. Granular Matter 21:11

    Article  Google Scholar 

  2. Brzesowsky RH, Hangx SJT, Brantut N et al (2014) Compaction creep of sands due to time-dependent grain failure: effects of chemical environment, applied stress, and grain size. J Geophys Res: Solid Earth 119:7521–7541

    Article  Google Scholar 

  3. Cao M (2019) Research on creep characteristics of calcareous sand in the South China Sea. Master thesis, Wuhan University of Technology, China

  4. Chen B, Chao DJ, Wu WJ, Hu JM (2019) Study on creep mechanism of coral sand based on particle breakage evolution law. J Vibroeng 4(21):1201–1214

    Article  Google Scholar 

  5. Firme PALP, Brandao NB, Roehl D et al (2018) Enhanced double-mechanism creep laws for salt rocks. Acta Geotech 13:1329–1340

    Article  Google Scholar 

  6. Gao R, Ye JH (2019) Experimental investigation on the dynamic characteristics of calcareous sand from the reclaimed coral reef islands in the South China Sea. Rock Soil Mech 40(10):3897–3908

    Google Scholar 

  7. Haiyilati Y (2021) Experimental study on the creep characteristics of the reclaimed calcareous coral sand in the South China Sea. Master thesis, Wuhan University of Technology, China

  8. Han J, Yin Z, Dano C et al (2020) Cyclic and creep combination effects on the long-term undrained behavior of overconsolidated clay. Acta Geotech

  9. He LJ, Kong LW, Wu WJ et al (2011) A description of creep model for soft soil with fractional derivative. Rock Soil Mech 32(2):239–244

    Google Scholar 

  10. Karimpour H, Lade PV (2013) Creep behavior in Virginia Beach sand. Can Geotech J 50:1159–1178

    Article  Google Scholar 

  11. Kondner RL (1963) Hyperbolic stress-strain response: cohesive soils. J Soil Mech 89(1):115–143

    Google Scholar 

  12. Lade PV, Liu CT (1998) Experimental study of drained creep behavior of sand. J Eng Mech 124(8):912–920

    Google Scholar 

  13. Lade PVL, Liu CT (1998) Experimental study of drained creep behavior of sand. J Eng Mech 124(8):15570

    Google Scholar 

  14. Lade PV, Nam J, Liggio CD Jr (2010) Effects of particle crushing in stress drop-relaxation experiments on crushed coral sand. J Geotech Geoenviron Eng 136(3):500–509

    Article  Google Scholar 

  15. Li J, Tang Y, Feng W (2020) Creep behavior of soft clay subjected to artificial freeze–thaw from multiple-scale perspectives. Acta Geotech 15:2849–2864

    Article  Google Scholar 

  16. Liu CQ, Wang R (1999) Evaluation of calcareous sand grains crushing and its energy equation. J Eng Geol 7(4):366–371

    Google Scholar 

  17. Liu S, Wang JF, Kork CY (2019) DEM simulation of creep in one-dimensional compression of crushable sand. J Geotechn Geoenviron Eng 145(10):04019060

    Article  Google Scholar 

  18. Liu HB, Zeng KF, Zou YZ (2020) Particle breakage of calcareous sand and its correlation with input energy. Int J Geomech 20(2):04019151

    Article  Google Scholar 

  19. Lv YR, Li F, Liu YW, Wang MY (2017) Comparative study of coral sand and silica sand in creep under general stress states. Can Geotech J 54(11):1601–1611

    Article  Google Scholar 

  20. Maqsood Z, Koseki J, Miyashita Y, Xie JR, Kyokawa H (2020) Experimental study on the mechanical behaviour of bounded geomaterials under creep and cyclic loading considering effects of instantaneous strain rates. Eng Geol 276:105774

    Article  Google Scholar 

  21. Markovitz H (1977) Boltzmann and the beginnings of linear viscoelasticity. Trans Soc Rheol 21:381

    Article  MathSciNet  MATH  Google Scholar 

  22. Mesri G, Febres-Cordero E, Shields DR, Castro A (1981) Shear stress-strain-time behavior of clays. Geotechnique 31(4):537–552

    Article  Google Scholar 

  23. Murayama S (1983) Formulation of stress-stain-time behavior of soils under deviatoric stress condition. Soils Found 23(2):43–57

    Article  Google Scholar 

  24. Murayama S, Michihiro K, Sakagami T (1984) Creep characteristics of sands. Soils Found 24(2):1–15

    Article  Google Scholar 

  25. Nishihara M (1958) Rheological properties of rocks I and II. Doshisha Engineering Review, 8:32–5 and 85–115

  26. Obituary (1982) Jan Burgers. Physics Today. 35(1): 84–85. January

  27. Peng Y, Ding XM, Xiao Y et al (2019) Study of particle breakage behavior of calcareous sand dyeing tracking and particle image segmentation method. Rock Soil Mech 40(7):2663–2672

    Google Scholar 

  28. Riaz B, Juan R, Tommy E (2015) Evaluation of primary and secondary deformations and particle breakage of tailings. Fund Appl Geotech 119:2481–2488

    Google Scholar 

  29. Singh A, Mitchell JK (1968) General stress-strain-time function for soils. J Soil Mech Found Div 94(1):24–46

    Article  Google Scholar 

  30. Sun Y, Chen C (2018) Fractional order creep model for coral sand. Mech Time-Dep Mater 8:1–12

    Google Scholar 

  31. Sun JZ, Wang R (2003) Study on particle failure process of calcareous sand under triaxial compression. Rock Soil Mech 24(5):822–825

    Google Scholar 

  32. Tong CX, Burton G, Zhang S, Sheng DC (2020) Particle breakage of uniformly graded carbonate sands in dry/wet condition subjected to compression/shear tests. Acta Geotech 15(5):1–14

    Google Scholar 

  33. Wang YF, Cai YY, Cai ZY (2017) Experimental investigation of creep properties of saturated sand. J Huaqiao Univ (Natural Science) 38(1):31–37

    Google Scholar 

  34. Wang YQ, Hong Y, Guo Z, Wang LZ (2018) Micro-and macro mechanical behavior of crushable calcareous sand in South China Sea. Rock Soil Mech 39(1):199–207

    Google Scholar 

  35. Wang YS, Ma LJ, Wang MY, Lv YR, Dong L, Fan PX (2018) A creep constitutive model incorporating deformation mechanisms for crushable calcareous sand. Arab J Geosci 11:623–630

    Article  Google Scholar 

  36. Wang XZ, Wang X, Weng YL, Lv SZ, Yan K, Zhu CQ (2016) Characteristics of dry density of calcareous sand and its testing methods. Rock Soil Mech 37(2):316–322

    Google Scholar 

  37. Wang S, Wang JG, Wu W, Cui DS, Su AJ, Xiang W (2020) Creep properties of clastic soil in a reactivated slow-moving landslide in the Three Gorges Reservoir Region, China. Eng Geol 267:105493

    Article  Google Scholar 

  38. Wang G, Wang ZN, Zha JJ (2020) Particle breakage evolution of coral sand using triaxial compression tests. J Rock Mech Geotech Eng 13(3):321–334

    Google Scholar 

  39. Wen Z, Duan ZG, Li SD et al (2019) Shear mechanical properties of dredged coral sand from the South China Sea. J Eng Geol

  40. Xie X, Qi SW, Zhao F, Wang DH (2018) Creep behavior and the microstructural evolution of loess-like soil from Xi’an area, China. Eng Geol 236(26):43–59

    Article  Google Scholar 

  41. Xu M, Jin D, Song E et al (2018) A rheological model to simulate the shear creep behavior of rockfills considering the influence of stress states. Acta Geotech 13:1313–1327

    Article  Google Scholar 

  42. Yang Q, Leng MW, Nie RS, Zhou W, Zhu W (2014) Laboratory test study of creep behavior of sandy. Chin J Rock Mech Eng 33(S2):4282–4286

    Google Scholar 

  43. Ye JH, Cao M, Gang Li (2019) Preliminary study on the creep characteristics of calcareous sand from reclaimed coral reef islands in South China Sea. Chin J Rock Mech Eng 38:1242–1251

    Google Scholar 

  44. Yin DS, Ren J, He CL et al (2007) A new rheological model element for geomaterials. Chin J Rock Mech Eng 26(9):1899–1903

    Google Scholar 

  45. Yu HZ, Wang R (1999) The cyclic strength test research on calcareous sand. Rock Soil Mech 20(4):6–11

    Google Scholar 

  46. Yu DW, Ye JH (2021) Numerical modelling of the creep subsidence of an ocean lighthouse constructed on a reclaimed Coral Reef Island. KSCE J Civ Eng 25(4):1191–1203

    Article  Google Scholar 

  47. Yu DW, Ye JH, Yao LH (2020) Prediction of the long-term settlement of the structures built on a reclaimed coral reef island: an aircraft runway. Bull Eng Geol Env 79(9):4549–4564

    Article  Google Scholar 

  48. Zhang JM, Zhang L, Liu H et al (2008) Experimental research on shear behavior of calcareous sand. Chin J Rock Mech Eng 27(S1):3010–3015

    Google Scholar 

  49. Zhao J, Feng XT, Zhang XW, Yang CX (2019) Brittle and ductile creep behavior of Jinping marble under true triaxial stress. Eng Geol 258:105157

    Article  Google Scholar 

  50. Zhao ZY, Qiu YY, Zi M et al (2019) Experimental study on dynamic compression of unsaturated calcareous sand. Explosion Shock Waves 40(2):023102

    Google Scholar 

  51. Zhu CQ, Chen HY, Meng QS, Wang R (2014) Microscopic characterization intra-pore structures of calcareous sands. Rock Soil Mech 35(7):1831–1836

    Google Scholar 

  52. Zuo RF, Du GX, Yang WG, Liao LB, Li ZH (2016) Mineralogical and chemical characteristics of a powder and purified quartz from Yunnan Province. Open Geosci 8(1):606–611

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely appreciate the financial support from the National Natural Science Foundation of China under Project No. 51879257.

Funding

National Natural Science Foundation of China under Project No. 51879257.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhong Ye.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Proportion of creep strain of the calcareous coral sand when creep tests are finished (single-level loading)

Dry density (g/cm3)

\({\sigma }_{3}^{^{\prime}}\)(kPa)

q (kPa)

\({\varepsilon }_{0}\)(%)

\({\varepsilon }_{c}\)(%)

\({\varepsilon }_{\mathrm{Total}}\)(%)

Creep strain percentage (%)

1.45

100

100

0.67

0.16

0.83

19

200

1.28

0.23

1.51

15

300

1.91

0.34

2.25

15

450

3.04

0.45

3.49

13

600

4.63

0.63

5.26

12

200

0.75

0.26

1.01

26

400

1.65

0.34

1.99

17

200

600

2.51

0.41

2.92

14

800

3.87

0.59

4.46

13

1000

5.71

0.93

6.64

14

400

1.56

0.28

1.84

15

800

3.49

0.47

3.96

12

400

1200

5.01

0.62

5.63

11

1600

7.04

0.63

7.67

8

2000

10.64

1.03

11.67

9

100

0.55

0.23

0.78

29

200

0.92

0.27

1.19

20

1.65

100

400

1.56

0.42

1.98

21

600

2.85

0.44

3.29

13

800

4.01

0.54

4.55

12

200

0.48

0.21

0.69

30

400

0.94

0.36

1.30

28

200

600

1.64

0.38

2.02

19

800

2.43

0.48

2.91

16

1000

3.54

0.62

4.16

15

500

1.61

0.41

2.02

20

400

1000

2.53

0.44

2.97

15

1500

3.33

0.63

3.96

16

2000

5.03

0.59

5.62

10

Appendix 2: Proportion of creep strain of the calcareous coral sand when creep tests are finished (multiple-level loading)

Dry density

(g/cm3)

\({\sigma }_{3}^{^{\prime}}\)(kPa)

q (kPa)

\({\varepsilon }_{0}\)(%)

\({\varepsilon }_{c}\)(%)

\({\varepsilon }_{Total}\) (%)

Creep strain percentage (%)

1.45

100

100

0.34

0.15

0.49

31

200

0.28

0.33

0.61

54

400

1.31

0.34

1.65

21

100

0.36

0.17

0.53

32

200

0.05

0.18

0.23

78

200

400

0.57

0.29

0.86

34

600

0.52

0.33

0.85

39

800

0.64

0.51

1.15

44

100

0.15

0.15

0.30

50

200

0.02

0.07

0.09

77

400

0.08

0.30

0.38

79

400

600

0.03

0.28

0.31

90

800

0.03

0.39

0.42

93

1200

0.84

0.58

1.42

41

1600

0.03

1.14

1.17

97

100

0.23

0.15

0.38

39

200

0.09

0.18

0.27

67

1.65

100

400

0.47

0.35

0.82

43

600

0.40

0.44

0.88

50

100

0.13

0.15

0.28

54

200

0.06

0.13

0.19

68

200

400

0.38

0.26

0.64

41

600

0.12

0.36

0.48

75

800

0.45

0.43

0.88

49

100

0.28

0.02

0.30

7

200

0.04

0.07

0.11

64

400

0.06

0.24

0.30

80

400

600

0.03

0.18

0.22

82

800

0.03

0.25

0.28

89

1200

0.36

0.47

0.83

57

1600

0.15

0.31

0.46

67

2000

≈0

1.31

1.31

100

Appendix 3: Model parameters of modified Burgers soft-matter model for the calcareous coral sand (single-level loading)

Dry density (g/cm3)

\({\sigma }_{3}^{^{\prime}}\)(kPa)

q (kPa)

E1 (MPa)

\({\eta }_{1}\)

C

β

1.45

100

100

1.733

60.146

16.815

0.289

200

2.326

65.803

19.94

0.265

300

2.686

61.955

14.164

0.245

450

2.563

71.622

15.674

0.229

600

2.016

52.286

19.900

0.247

200

2.543

202.146

9.103

0.220

400

4.482

167.052

18.002

0.239

200

600

5.430

529.240

25.136

0.255

800

4.164

321.049

22.995

0.244

1000

2.773

121.516

18.041

0.227

400

5.568

217.076

10.091

0.184

800

6.289

184.971

10.016

0.159

400

1200

8.392

287.890

13.156

0.185

1600

11.188

658.118

20.592

0.200

2000

4.777

653.488

46.264

0.272

100

2.134

159.731

2.717

0.176

200

4.346

80.288

5.281

0.196

1.65

100

400

2.553

232.302

6.167

0.156

600

3.844

107.735

9.096

0.161

800

3.874

126.230

9.851

0.160

200

4.404

252.107

12.330

0.232

400

4.319

318.055

12.508

0.208

200

600

4.580

247.576

26.110

0.234

800

7.105

852.303

19.995

0.219

1000

7.396

572.481

24.963

0.242

500

4.029

124.352

7.705

0.166

400

1000

7.007

304.348

18.245

0.190

1500

12.397

488.071

17.951

0.195

2000

10.096

420.667

23.579

0.167

Appendix 4: Model parameters of modified Burgers soft-matter model for the calcareous coral sand (multiple-level loading)

Dry density (g/cm3)

\({\sigma }_{3}^{^{\prime}}\)(kPa)

q (kPa)

E1 (MPa)

\({\eta }_{1}\)

C

β

1.45

100

100

168.321

3893

393

0.150

200

147.710

3731

368

0.159

400

295.639

6264

1018

0.208

100

187.652

5000

826

0.263

200

318.319

26637

1953

0.285

200

400

492.61

93050

5884

0.302

600

336.13

25406

12292

0.364

800

457.4

40839

17123

0.377

100

328.41

31366

690

0.237

400

308.64

22594

3110

0.289

400

600

455.93

126190

12074

0.389

800

287.05

105726

39138

0.466

1200

630.25

22309

46012

0.496

1600

507.94

51493

136286

0.552

1.65

100

100

309.21

5203

597

0.214

200

540.102

44270

1648

0.247

400

507.87

50484

2900

0.260

600

720.89

83417

4207

0.262

100

392.16

104269

523

0.208

200

410.26

107368

1785

0.235

200

400

3584

7977

2487

0.247

600

456.62

42875

3322

0.263

800

785

155770

7207

0.289

100

807.7

18620

6134

0.267

400

585.9

60025

3108

0.275

600

859.9

236905

11871

0.373

400

800

676.2

188527

20613

0.412

1200

939.7

146052

55710

0.431

1600

1124.4

247389

85607

0.492

2000

685.87

73813

267594

0.544

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Haiyilati, Y., Cao, M. et al. Creep characteristics of calcareous coral sand in the South China Sea. Acta Geotech. 17, 5133–5155 (2022). https://doi.org/10.1007/s11440-022-01634-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-022-01634-1

Keywords

Navigation