Skip to main content
Log in

Semi-analytical solutions for soil consolidation induced by drying

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Drying induced consolidation is ubiquitous in nature, yet no theoretical model is available to delineate this phenomenon. Fundamentally, this phenomenon is a multi-physical process involving that the soil–water interaction energy lowers (becomes more negative), thereby soil’s suction stress, elastic modulus, and hydraulic conductivity change. Therefore, the drying induced consolidation is a phenomenon reflecting soil’s mechanical, hydraulic, and hydro-mechanical properties altered by soil–water interaction. Here, a theoretical framework is developed for drying induced consolidation. Richards equation is selected to describe moisture flow subject to drying. The impact of soil–water interaction on soil mechanical properties is quantified via an elastic modulus characteristic curve equation and a unified effective stress equation, respectively. Gardner’s model is selected for representing soil water retention and hydraulic properties, facilitating the semi-analytical solutions for drying induced consolidation. The accuracy of solutions is verified by comparing with numerical solutions of moisture flow and soil shrinkage curve data. It reveals that the adsorption induced effective stress can reach up to hundreds of kPa and contributes 96.7% of the total consolidation settlement for clayey soils. In addition, the elastic modulus variation is commonly overlooked in existing consolidation models, but this overlook can lead to either underestimation up to 0.66 times or overestimation up to 6.86 times of consolidation settlement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

q(t):

A dimensionless function related to evaporation flux at upper boundary

α s s :

A fitting parameter related to the inverse of average capillary suction stress in SSCC (kPa−1)

s :

Consolidation settlement (m)

θ :

Volumetric water content

β :

A parameter related to soil types in SWRC (m1)

θ s :

Saturated volumetric water content

θ r :

Residual volumetric water content

β E :

A dimensionless parameter in EMCC

\(\theta_{{{\text{tran}}}}^{{\text{E}}}\) :

Transitional water content in EMCC

β ss :

A dimensionless parameter reflecting the strength of adsorptive suction stress in SSCC

\(\theta_{{{\text{tran}}}}^{{{\text{ss}}}}\) :

Transitional water content in SSCC

Θ:

Effective degree of saturation

Θi :

Initial effective degree of saturation

D z :

The diffusion constant (m2/s)

Θ1 :

Constant effective degree of saturation at upper boundary

E :

Tangent elastic modulus of soil (kPa)

E d :

Elastic modulus at oven dry state (kPa)

σ i :

Total stress at i direction (kPa)

E s :

Elastic modulus at fully saturated (kPa)

σ i':

Effective stress at i direction (kPa)

E cm :

The maximum capillary elastic modulus (kPa)

σ i s :

Suction stress at i direction (kPa)

\(\sigma_{{{\text{ads}}}}^{s}\) :

Adsorptive suction stress (kPa)

ε z :

Vertical soil skeleton strain

\(\sigma_{{{\text{cap}}}}^{s}\) :

Capillary suction stress (kPa)

ε v :

Volumetric strain for soil skeleton

\(\sigma_{{{\text{dry}}}}^{s}\) :

The maximum suction stress at the oven- dry state (kPa)

g(t):

Upper boundary condition for hydraulic fields

t :

Time (s)

γ w :

The unit weight of water (kN/m3)

T :

A dimensionless variable related to time

H :

The thickness of soil layer (m)

τ :

Shear stress (kPa)

K z :

Hydraulic conductivity (m/s)

u a :

Pore air pressure (kPa)

K zs :

Saturated hydraulic conductivity (m/s)

u i :

The displacement at i direction (m)

κ m :

A function related to hydraulic boundary conditions in analytical solutions

x :

Coordinate at the x direction (m)

y :

Coordinate at the y direction (m)

z :

Coordinate at the vertical direction (m)

L :

A dimensionless parameter related to the thickness of the soil layer

χ :

A dimensionless variable related to vertical displacement

ν :

Poisson’s ratio of soil

Г(z,t):

A decomposed transient function of Θ(z,t) distribution in EMCC

n E :

A fitting parameter related to pore size

V(z,t):

A decomposed transient function of Θ(z,t) to achieve the homogenization for hydraulic boundary conditions

n ss :

A fitting parameter related to pore size distribution in SSCC

SWRC:

Soil water retention curve

λ m :

A set of orthogonal functions related to fourier series expansion

SHCC:

Soil hydraulic conductivity curve

EMCC:

Elastic modulus characteristic curve

ψ t :

Water potential (kPa)

SSCC:

Suction stress characteristic curve

ψ m :

Matric potential (kPa)

SSC:

Soil shrinkage curve

ψ g :

Gravitational potential (kPa)

References

  1. Akin ID, Likos WJ (2020) Suction stress of clay over a wide range of saturation. Geotech Geol Eng 38(1):283–296

    Article  Google Scholar 

  2. Akin ID, Potter LS, Edil TB (2021) Implications of interparticle forces on resilient and shear modulus of unsaturated compacted kaolinite. J Geotech Geoenviron Eng 147(12):1–10

    Article  Google Scholar 

  3. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164

    Article  MATH  Google Scholar 

  4. Biot MA (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26(2):182–185

    Article  MathSciNet  MATH  Google Scholar 

  5. Bishop AW (1954) The use of pore-pressure coefficients in practice. Géotechnique 4(4):148–152

    Article  Google Scholar 

  6. Bishop AW (1959) The principle of effective stress. Tek Ukebl 39:859–863

    Google Scholar 

  7. Brooks RH, Corey AT (1964) Hydraulic properties of porous medium. Colorado State University, Fort Collin

    Google Scholar 

  8. Cain G, Meyer GH (2005) Separation of variables for partial differential equations. Chapman and Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  9. Cavalcante ALB, Zornberg JG (2017) Efficient approach to solving transient unsaturated flow problems. I: Analytical solutions. Int J Geomech 17(7):4017013

    Article  Google Scholar 

  10. Coleman JD (1962) Stress/strain relations for partly saturated soils. Geotechnique 12(4):348–350

    Article  Google Scholar 

  11. Conte E (2004) Consolidation analysis for unsaturated soils. Can Geotech J 41(4):599–612

    Article  Google Scholar 

  12. Dong Y, Lu N (2017) Measurement of suction-stress characteristic curve under drying and wetting conditions. Geotech Test J 40(1):107–121

    Article  Google Scholar 

  13. Dong Y, Lu N, Fox PJ (2020) Drying-Induced consolidation in soil. J Geotech Geoenviron Eng 146(9):04020092

    Article  Google Scholar 

  14. Dong Y, Lu N, McCartney JS (2016) Unified model for small-strain shear modulus of variably saturated soil. J Geotech Geoenviron Eng 142(9):4016039

    Article  Google Scholar 

  15. Fredlund DG, Hasan JU (1979) One-dimensional consolidation theory: unsaturated soils. Can Geotech J 16(3):521–531

    Article  Google Scholar 

  16. Fredlund DG, Morgenstern NR (1977) Stress state variables for unsaturated soils. J Geotech Geoenviron Eng 103:447–466

    Google Scholar 

  17. Fredlund DG, Xing A (1994) Equations for the soil-water characteristic curve. Can Geotech J 31(4):521–532

    Article  Google Scholar 

  18. Gardner WR (1958) Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci 85(4):228–232

    Article  Google Scholar 

  19. Huang RQ, Wu LZ (2012) Analytical solutions to 1-D horizontal and vertical water infiltration in saturated/unsaturated soils considering time-varying rainfall. Comput Geotech 39:66–72

    Article  Google Scholar 

  20. Khalili N, Habte MA, Zargarbashi S (2008) A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hystereses. Comput Geotech 35(6):872–889

    Article  Google Scholar 

  21. Khalili N, Khabbaz MH, Valliappan S (2000) Effective stress based numerical model for hydro-mechanical analysis in unsaturated porous media. Comput Mech 26(2):174–184

    Article  MATH  Google Scholar 

  22. Li JH, Zhang LM (2010) Geometric parameters and REV of a crack network in soil. Comput Geotech 37(4):466–475

    Article  Google Scholar 

  23. Liu H, Liu H, Xiao Y, Chen Q, Gao Y, Peng J (2018) Non-linear elastic model incorporating temperature effects. Geotech Res 5(1):22–30

    Article  Google Scholar 

  24. Lloret A, Alonso EE (1980) Consolidation of unsaturated soils including swelling and collapse behaviour. Géotechnique 30(4):449–477

    Article  Google Scholar 

  25. Lo W-C, Sposito G, Chu H (2014) Poroelastic theory of consolidation in unsaturated soils. Vadose Zone J 13(5):1–12

    Article  Google Scholar 

  26. Lu N (2016) Generalized soil water retention equation for adsorption and capillarity. J Geotech Geoenviron Eng 142(10):04016051

    Article  Google Scholar 

  27. Lu N (2018) Generalized elastic modulus equation for unsaturated soil. PanAm Unsatur Soils 2017:32–48

    Article  Google Scholar 

  28. Lu N, Dong Y (2017) Correlation between soil-shrinkage curve and water-retention characteristics. J Geotech Geoenviron Eng 143(9):04017054

    Article  Google Scholar 

  29. Lu N, Godt JW (2013) Hillslope hydrology and stability. Cambridge University Press, England

    Book  Google Scholar 

  30. Lu N, Likos WJ (2006) Suction stress characteristic curve for unsaturated soil. J Geotech Geoenviron Eng 132(2):131–142

    Article  Google Scholar 

  31. Lu N, Likos WJ, Luo S, Oh H (2021) Is the conventional pore water pressure concept adequate for fine-grained soils in geotechnical and geoenvironmental engineering? J Geotech Geoenviron Eng 147(10):02521001

    Article  Google Scholar 

  32. Lu N, Zhang C (2019) Soil sorptive potential: Concept, theory, and verification. J Geotech Geoenviron Eng 145(4):04019006

    Article  Google Scholar 

  33. Mualem Y (1976) A new model for predicting the hydraulic conduc. Water Resour Res 12(3):513–522

    Article  Google Scholar 

  34. Peters A (2013) Simple consistent models for water retention and hydraulic conductivity in the complete moisture range. Water Resour Res 49(10):6765–6780

    Article  Google Scholar 

  35. Pinchover Y, Rubinstein J (2005) An Introduction to partial differential equations. Cambridge University Press, England

    Book  MATH  Google Scholar 

  36. Pullan AJ (1990) The quasilinear approximation for unsaturated porous media flow. Water Resour Res 26(6):1219–1234

    Article  Google Scholar 

  37. Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1(5):318–333

    Article  MATH  Google Scholar 

  38. Schiesser WE (2012) The numerical method of lines: integration of partial differential equations. Elsevier, Netherlands

    MATH  Google Scholar 

  39. Schrefler BA, Simoni L, Xikui L, Zienkiewicz OC (1990) Mechanics of partially saturated porous media. Numer Method Const Modell Geomech. https://doi.org/10.1007/978-3-7091-2832-9_2

    Article  Google Scholar 

  40. Schrefler BA, Xiaoyong Z (1993) A fully coupled model for water flow and airflow in deformable porous media. Water Resour Res 29(1):155–167

    Article  Google Scholar 

  41. Srivastava R, Yeh TJ (1991) Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils. Water Resour Res 27(5):753–762

    Article  Google Scholar 

  42. Sun Y, Xiao Y, Zheng C, Hanif KF (2016) Modelling long-term deformation of granular soils incorporating the concept of fractional calculus. Acta Mech Sin 32(1):112–124

    Article  MathSciNet  MATH  Google Scholar 

  43. Terzaghi K (1925) Principles of soil mechanics: IV Settlement and consolidation of clay. Eng News Rec 95(3):874–878

    Google Scholar 

  44. Terzaghi K (1943) Theoretical soil mechanics. Wiley, New York

    Book  Google Scholar 

  45. Tuller M, Or D (2001) Hydraulic conductivity of variably saturated porous media: Film and corner flow in angular pore space. Water Resour Res 37(5):1257–1276

    Article  Google Scholar 

  46. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  47. Vogel HJ, Hoffmann H, Leopold A, Roth K (2005) Studies of crack dynamics in clay soil: II. A physically based model for crack formation. Geoderma 125(3–4):213–223

    Article  Google Scholar 

  48. Wang Y, Ma J, Guan H (2016) A mathematically continuous model for describing the hydraulic properties of unsaturated porous media over the entire range of matric suctions. J Hydrol 541:873–888

    Article  Google Scholar 

  49. Wu LZ, Zhang LM (2009) Analytical solution to 1D coupled water infiltration and deformation in unsaturated soils. Int J Numer Anal Meth Geomech 33(6):773–790

    Article  MATH  Google Scholar 

  50. Wubneh KG (2020) Solving fundamental solution of non-homogeneous heat equation with dirichlet boundary conditions. Bull Math Sci Appl 22:1–9

    Google Scholar 

  51. Yin J-H, Feng W-Q (2017) A new simplified method and its verification for calculation of consolidation settlement of a clayey soil with creep. Can Geotech J 54(3):333–347

    Article  Google Scholar 

  52. Zhang C, Hu S, Lu N (2022) Unified elastic modulus characteristic curve equation for variably saturated soils. J Geotech Geoenviron Eng 148(1):1–15

    Article  Google Scholar 

  53. Zhang C, Lu N (2019) Unitary definition of matric suction. J Geotech Geoenviron Eng 145(2):02818004

    Article  Google Scholar 

  54. Zhang C, Lu N (2020) Unified effective etress equation for soil. J Eng Mech 146(2):04019135

    Google Scholar 

  55. Zhang C, Lu N (2020) Soil sorptive potential: its determination and predicting soil water density. J Geotech Geoenviron Eng 146(1):04019118

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the National Natural Science Foundation of China (Grants No. 52078208 and 52090083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Derivations of Analytical Solution for Settlement

To obtain soil layer settlement under drying, the suction-stress-based effective stress is implemented in the classical elasticity. The stress state of a soil element and coordinates are illustrated in Fig. 1. The gravity can be neglected in drying induced consolidation, implying zero body force, and thus the force equilibrium equations can be expressed as:

$$\frac{{\partial \sigma_{x} }}{\partial x} + \frac{{\partial \tau_{yx} }}{\partial y} + \frac{{\partial \tau_{zx} }}{\partial z} = 0$$
(A1)
$$\frac{{\partial \sigma_{y} }}{\partial y} + \frac{{\partial \tau_{zy} }}{\partial z} + \frac{{\partial \tau_{xy} }}{\partial x} = 0$$
(A2)
$$\frac{{\partial \sigma_{z} }}{\partial z} + \frac{{\partial \tau_{xz} }}{\partial x} + \frac{{\partial \tau_{yz} }}{\partial y} = 0$$
(A3)

The stress–strain relationships for the homogeneous and isotropic soil layer can be obtained by Hooke’s law:

$${\text{d}} \varepsilon_{x} = \frac{1}{E}\left[ {{\text{d}} \sigma_{x} ^{\prime} - \nu \left( {{\text{d}} \sigma_{y} ^{\prime} + {\text{d}} \sigma_{z} ^{\prime}} \right)} \right] = \frac{1}{E}\left[ {{\text{d}} \sigma_{x} - \nu \left( {{\text{d}} \sigma_{y} + {\text{d}} \sigma_{z} } \right)} \right] - \frac{1 - 2\nu }{E}{\text{d}} \sigma^{s}$$
(A4)
$${\text{d}} \varepsilon_{y} = \frac{1}{E}\left[ {{\text{d}} \sigma_{y} ^{\prime} - \nu \left( {{\text{d}} \sigma_{z} ^{\prime} + {\text{d}} \sigma_{x} ^{\prime}} \right)} \right] = \frac{1}{E}\left[ {{\text{d}} \sigma_{y} - \nu \left( {{\text{d}} \sigma_{z} + {\text{d}} \sigma_{x} } \right)} \right] - \frac{1 - 2\nu }{E}{\text{d}} \sigma^{s}$$
(A5)
$${\text{d}} \varepsilon_{z} = \frac{1}{E}\left[ {{\text{d}} \sigma_{z} ^{\prime} - \nu \left( {{\text{d}} \sigma_{x} ^{\prime} + {\text{d}} \sigma_{y} ^{\prime}} \right)} \right] = \frac{1}{E}\left[ {{\text{d}} \sigma_{z} - \nu \left( {{\text{d}} \sigma_{x} + {\text{d}} \sigma_{y} } \right)} \right] - \frac{1 - 2\nu }{E}{\text{d}} \sigma^{s}$$
(A6)

Substituting Eqs. (A4)-(A6) into Eqs. (A1)-(A3) gives following equations which can be solved by displacement constraints:

$$\frac{E}{{2\left( {1 + \nu } \right)}}\left( {\frac{1}{1 - 2\nu }\frac{{\partial \varepsilon_{v} }}{\partial x} + \nabla^{2} u_{x} } \right) + \frac{{\partial \sigma^{s} }}{\partial x} = 0$$
(A7)
$$\frac{E}{{2\left( {1 + \nu } \right)}}\left( {\frac{1}{1 - 2\nu }\frac{{\partial \varepsilon_{v} }}{\partial y} + \nabla^{2} u_{y} } \right) + \frac{{\partial \sigma^{s} }}{\partial y} = 0$$
(A8)
$$\frac{E}{{2\left( {1 + \nu } \right)}}\left( {\frac{1}{1 - 2\nu }\frac{{\partial \varepsilon_{v} }}{\partial z} + \nabla^{2} u_{z} } \right) + \frac{{\partial \sigma^{s} }}{\partial z} = 0$$
(A9)

where εv is the volumetric strain for soil skeleton and can be expressed as εv = εx + εy + εz; and ux, uy, and uz are the displacements at x,y,z directions, respectively. For the infinite soil layer in Fig. 1, the displacement constraints are:

$$u_{x} = u_{y} = 0, \, u_{z} = u_{z} \left( z \right)$$
(A10)

The displacement constraint of ux = uy = 0 is automatically satisfied by Eq. (A7)-(A8), whereas Eq. (A9) should satisfy the following equation:

$$\frac{E}{{2\left( {1 + \nu } \right)}}\left( {\frac{1}{1 - 2\nu }\frac{{{\text{d}}^{2} u_{z} }}{{{\text{d}} z^{2} }} + \frac{{{\text{d}}^{2} u_{z} }}{{{\text{d}} z^{2} }}} \right) + \frac{{{\text{d}} \sigma^{s} }}{{{\text{d}} z}} = 0$$
(A11)

Considering the soil layer is sufficiently thin with a thickness of ΔH, the suction stress within the soil layer is homogeneous. Consequently, the vertical displacement uz of the thin soil layer ΔH can be expressed as follows:

$$\Delta u_{z} = Az + B$$
(A12)

where A is an undetermined constant, and B is a constant which can be determined by the lower boundary, i.e., \(\Delta\) uz(z = \(0\)) = 0.

The soil layer shrinks freely in the vertical direction, indicating zero vertical stress, i.e., σz = 0. Therefore, the constant A can be determined, and the incremental form of vertical strain and displacement can be obtained:

$${\text{d}} \varepsilon_{z} = - \frac{{\left( {1 + \nu } \right)\left( {1 - 2\nu } \right)}}{1 - \nu } \cdot \frac{{{\text{d}} \sigma^{s} }}{E}$$
(A13)
$${\text{d}} u_{z} = - \frac{{\left( {1 + \nu } \right)\left( {1 - 2\nu } \right)}}{1 - \nu } \cdot \frac{{{\text{d}} \sigma^{s} }}{E} \cdot z$$
(A14)

Appendix 2

Derivations of Analytical Solutions with Gravitational Potential

To obtain the analytical solutions, the one-dimensional Richards equation of Eq. (12) is first transformed into a one-dimensional non-homogeneous differential equation of parabolic type. Then, the eigenfunction method is utilized to derive the solutions for UM-LM and UF-LM conditions.

The governing equation of Eq. (12) can be simplified with the aid of two dimensionless variables for displacement and time: χ = βz and T = βKzst/(θsθr):

$$\frac{{\partial^{2} \Theta }}{{\partial \chi^{2} }} + \frac{\partial \Theta }{{\partial \chi }} = \frac{\partial \Theta }{{\partial T}}$$
(B1)

An intermediate variable φ(χ,T) = Θ∙exp(χ/2 + T/4) is introduced to transform Eq. (B1) into a differential equation of parabolic type (e.g., [20, 49]). This parabolic equation can be solved with homogenized boundary conditions. Herein, this homogenization is achieved by decomposing φ(χ,T) into two undetermined transient functions \(\Gamma_{g} (\chi ,T)\) and Vg(χ,T), where Vg(χ,T) is utilized to homogenize the boundary conditions (e.g., [8, 36, 50]). Accordingly, Eq. (B1) can be expressed as:

$$\frac{{\partial^{2} \Gamma_{g} }}{{\partial \chi^{2} }} = \frac{{\partial \Gamma_{g} }}{\partial T} + \left( {\frac{{\partial V_{g} }}{\partial T} - \frac{{\partial^{2} V_{g} }}{{\partial \chi^{2} }}} \right)$$
(B2)

Introducing \(\delta_{g} (\chi ,T)\) to represent the last term above, Eq. (B2) can be expressed as

$$\frac{{\partial^{2} \Gamma_{g} }}{{\partial \chi^{2} }} = \frac{{\partial \Gamma_{g} }}{\partial T} + \delta_{g} (\chi ,T)$$
(B3)

The transformation above reduces the Richards equation Eq. (12) to a one-dimensional non-homogeneous differential equation of parabolic type Eq. (B3). Then, the particular solutions can be obtained with Eq. (B3) for given boundary conditions.

Derivations for condition UM-LM

In this condition, the boundary and initial conditions can be expressed as:

$$\Theta (z = H,t) = g(T)$$
(B4)
$$\Theta (z = 0,t) = 1$$
(B5)
$$\Theta (z,t = 0) = \Theta_{i} \left( \chi \right)$$
(B6)

The function Vg(χ,T) can be determined by:

$$V_{g} (\chi ,T) = \frac{1}{L}\left[ {(L - \chi ){\text{e}}^{\frac{T}{4}} + \chi {\text{e}}^{{\frac{L}{2} + \frac{T}{4}}} g(T)} \right]$$
(B7)

where L = βH. The solution of Eq. (B3) in this condition can be found via the eigenfunction method:

$$\Gamma_{g} = \sum\limits_{m = 1}^{\infty } {T_{mg} (T) \cdot \sin \frac{m\pi \chi }{L} \quad m = 1,2,3, \ldots }$$
(B8)

where

$$T_{mg} (T) = {\text{e}}^{{ - (\frac{m\pi }{L})^{2} T}} [\int_{0}^{T} {f_{mg} (T) \cdot {\text{e}}^{{(\frac{m\pi }{L})^{2} T}} {\text{d}} T} + T_{mg} {(0)}]$$
(B9)
$$f_{mg} (T) = \frac{2}{L}\int_{0}^{L} { - \delta_{g} (\chi ,T)\sin \frac{m\pi \chi }{L}{\text{d}} \chi }$$
(B10)
$$T_{mg} (0){ = }\frac{2}{L}\int_{0}^{L} {\left[ {\Theta_{i} (\chi ) \cdot {\text{e}}^{{\frac{\chi }{2}}} - V_{g} (\chi ,0)} \right]\sin \frac{m\pi \chi }{L}{\text{d}} \chi }$$
(B11)

Derivations for condition UF-LM

In this condition, the upper boundary condition can be written as:

$$\left. {\left( {\frac{\partial }{\partial \chi }\Theta + \Theta } \right)} \right|_{\chi = L} = q(T)$$
(B12)

The lower boundary and initial conditions are identical to UM-LM condition in (B1). The function Vg(χ,T) can be determined as:

$$V_{g} (\chi ,T) = \frac{{2\chi^{2} }}{{4L + L^{2} }}\left[ {q(T){\text{e}}^{{(\frac{L}{2} + \frac{T}{4})}} - \frac{1}{2}{\text{e}}^{\frac{T}{4}} } \right] + {\text{e}}^{\frac{T}{4}}$$
(B13)

The solution of Eq. (B3) in this condition can be found to be as follows:

$$\Gamma_{g} = \sum\limits_{m = 1}^{\infty } {T_{mg} (T) \cdot \sin \frac{{\upsilon_{m} \chi }}{L} \quad m = 1,2,3,...}$$
(B14)

where

$$T_{mg} (T) = {\text{e}}^{{ - \left( {\frac{{\upsilon_{m} }}{L}} \right)^{2} \cdot T}} \left[ {\int_{0}^{T} {f_{mg} (T){\text{e}}^{{\left( {\frac{{\upsilon_{m} }}{L}} \right)^{2} T}} {\text{d}} T} + T_{mg} {(0)}} \right]$$
(B15)
$$f_{mg} (T) = 2\left[ {L + \frac{1}{{\frac{1}{2} + 2\left( {\upsilon_{m} /L} \right)^{2} }}} \right]^{ - 1} \int_{0}^{L} { - \delta_{g} (\chi ,T)\sin \frac{{\upsilon_{m} \chi }}{L}{\text{d}} \chi }$$
(B16)
$$T_{mg} (0){ = }2\left[ {L + \frac{1}{{\frac{1}{2} + 2\left( {\upsilon_{m} /L} \right)^{2} }}} \right]^{ - 1} \int_{0}^{L} {\left[ {\Theta_{i} (\chi ){\text{e}}^{{\frac{\chi }{2}}} - V_{g} (\chi ,0)} \right]\sin \frac{{\upsilon_{m} }}{L}\chi {\text{d}} \chi }$$
(B17)
$$- 2\frac{{\upsilon_{m} }}{L} = \tan \upsilon_{m} \,$$
(B18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, L., Zhang, C., Hu, S. et al. Semi-analytical solutions for soil consolidation induced by drying. Acta Geotech. 18, 739–755 (2023). https://doi.org/10.1007/s11440-022-01623-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-022-01623-4

Keywords

Navigation