Skip to main content
Log in

Multi-scale simulation of wave propagation and liquefaction in a one-dimensional soil column: hybrid DEM and finite-difference procedure

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The paper describes a multi-phase, multi-scale rational method for modeling and predicting free-field wave propagation and the weakening and liquefaction of near-surface soils. The one-dimensional time-domain model of a soil column uses the discrete element method (DEM) to track stress and strain within a series of representative volume elements (RVEs), driven by seismic rock displacements at the column base. The RVE interactions are accomplished with a time-stepping finite-difference algorithm. The method applies Darcy’s principle to resolve the momentum transfer between a soil’s solid matrix and its interstitial pore fluid. Different algorithms are described for the dynamic period of seismic shaking and for the post-shaking consolidation period. The method can analyze numerous conditions and phenomena, including site-specific amplification, down-slope movement of sloping ground, dissolution or cavitation of air in the pore fluid, and drainage that is concurrent with shaking. Several refinements of the DEM are described for realistically simulating soil behavior and for solving a range of propagation and liquefaction factors, including the poromechanic stiffness of the pore fluid and the pressure-dependent drained stiffness of the grain matrix. The model is applied to four sets of well-documented centrifuge studies. The verification results are favorable and highlight the importance of the pore fluid conditions, such as the amount of dissolved air within the pore water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The simulations in this paper were performed with the program DEMPLA, “Discrete Element Method for Propagation and Liquefaction Analysis.” The program is available on GitHub in the repository https://github.com/mrkuhn53/dempla, which includes source code, documentation, and examples [43].

References

  1. Agnolin I, Roux JN (2007) Internal states of model isotropic granular packings. III. Elastic properties. Phys Rev E 76:061304. https://doi.org/10.1103/PhysRevE.76.061304

    Article  MathSciNet  Google Scholar 

  2. Al-Jibury FK (1960) Saturated water permeability of soils as related to air permeability at different moisture tension. Oregon State University, Corvallis

    Google Scholar 

  3. Arulmoli K (1994) VELACS: selection, distribution and laboratory testing of soils. In: Arulanandan K, Scott RF (eds) Verifications of numerical procedures for the analysis of soil liquefaction problems, vol 2. Balkema, Rotterdam, pp 1281–1292

    Google Scholar 

  4. Arulmoli K, Muraleetharan KK, Hossain MM, Fruth LS (1992) VELACS verification of liquefaction analyses by centrifuge studies laboratory testing program soil data report. Tech. Rep. Project No. 90-0562, The Earth Technology Corporation, Irvine, CA. Data available through http://yees.usc.edu/velacs

  5. Bagi K (1996) Stress and strain in granular assemblies. Mech Mater 22(3):165–177. https://doi.org/10.1016/0167-6636(95)00044-5

    Article  Google Scholar 

  6. Bardet JP (1994) Numerical simulations of the incremental responses of idealized granular materials. Int J Solids Struct 10(8):879–908. https://doi.org/10.1016/0749-6419(94)90019-1

    Article  MATH  Google Scholar 

  7. Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498. https://doi.org/10.1063/1.1728759

    Article  MathSciNet  MATH  Google Scholar 

  8. Biot MA, Willis DG (1957) The elastic coefficients of the theory of consolidation. J Appl Mech 15:594–601

    Article  MathSciNet  Google Scholar 

  9. Bouckovalas GD, Tsiapas YZ, Zontanou VA, Kalogeraki CG (2017) Equivalent linear computation of response spectra for liquefiable sites: the spectral envelope method. J Geotech Geoenviron Eng 143(4):04016115. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001625

    Article  Google Scholar 

  10. Bray JD, Boulanger RW, Cubrinovski M, Tokimatsu K, Kramer SL, O’Rourke T, Rathje E, Green RA, Robertson PK, Beyzaei CZ (2017) Liquefaction-induced ground movement effects: U.S.—new zealand-japan international workshop. PEER Repor 2017/02, Pacific Earthquake Engineering Research Center, University of California, Berkeley

  11. Butterfield R (2000) Scale-modelling of fluid flow in geotechnical centrifuges. Soils Found 40(6):39–45. https://doi.org/10.3208/sandf.40.6_39

    Article  Google Scholar 

  12. Center for Engineering Strong Motion Data: Strong-Motion Virtual Data Center (VDC) (2021). https://www.strongmotioncenter.org/vdc/scripts/default.plx

  13. Center for Geotechnical Modeling: University of California, Davis (2021). https://cgm.engr.ucdavis.edu/about/

  14. Chakrabortty P, Popescu R (2012) Numerical simulation of centrifuge tests on homogeneous and heterogeneous soil models. Comput Geotech 41:95–105. https://doi.org/10.1016/j.compgeo.2011.11.008

    Article  Google Scholar 

  15. Cho GC, Dodds J, Santamarina JC (2006) Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J Geotech Geoenviron Eng 132(5):591–602. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:11(1474)

    Article  Google Scholar 

  16. Cleary PW, Sinnott M, Morrison R (2006) Prediction of slurry transport in SAG mills using SPH fluid flow in a dynamic dem based porous media. Miner Eng 19(15):1517–1527. https://doi.org/10.1016/j.mineng.2006.08.018

    Article  Google Scholar 

  17. Cundall PA (1988) Computer simulations of dense sphere assemblies. In: Satake M, Jenkins J (eds) Micromechanics of granular materials. Elsevier, Amsterdam, pp 113–123

    Google Scholar 

  18. da Cruz F, Emam S, Prochnow M, Roux JN, Chevoir F (2005) Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys Rev E 72(2):021309. https://doi.org/10.1103/PhysRevE.72.021309

    Article  Google Scholar 

  19. Deierlein GG, Zsaróczay A (2021) State of the art in computational simulation for natural hazards engineering. Report 2021-01, NHERI Center for Computational Modeling and Simulation, 2nd edn. https://doi.org/10.5281/zenodo.2579581

  20. El Shamy U, Abdelhamid Y (2014) Modeling granular soils liquefaction using coupled lattice Boltzmann method and discrete element method. Soil Dyn Earthq Eng 67:119–132. https://doi.org/10.1016/j.soildyn.2014.09.004

    Article  Google Scholar 

  21. El Shamy U, Zeghal M (2005) Coupled continuum-discrete model for saturated granular soils. J Eng Mech 131(4):413–426. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:4(413)

    Article  Google Scholar 

  22. El Shamy U, Zeghal M (2007) A micro-mechanical investigation of the dynamic response and liquefaction of saturated granular soils. Soil Dyn Earthq Eng 27(8):712–729. https://doi.org/10.1016/j.soildyn.2006.12.010

    Article  Google Scholar 

  23. Elgamal A, Yang Z, Lai T, Kutter BL, Wilson DW (2005) Dynamic response of saturated dense sand in laminated centrifuge container. J Geotech Geoenviron Eng 131(5):598–609. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:5(598)

    Article  Google Scholar 

  24. Elgamal AW, Zeghal M, Tang HT, Stepp JC (1995) Lotung downhole array. I: evaluation of site dynamic properties. J Geotech Eng 121(4):350–362. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:4(350)

    Article  Google Scholar 

  25. Faybishenko BA (1995) Hydraulic behavior of quasi-saturated soils in the presence of entrapped air: laboratory experiments. Water Resour Res 31(10):2421–2435. https://doi.org/10.1029/95WR01654

    Article  Google Scholar 

  26. Fredlund DG (1976) Density and compressibility characteristics of air-water mixtures. Can Geotech J 13(4):386–396. https://doi.org/10.1139/t76-040

    Article  Google Scholar 

  27. Fredlund DG (2006) Unsaturated soil mechanics in engineering practice. J Geotech Geoenviron Eng 132(3):286–321. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:3(286)

    Article  Google Scholar 

  28. Goddard JD (1990) Nonlinear elasticity and pressure-dependent wave speeds in granular media. Proc R Soc Lond A 430:105–131. https://doi.org/10.1098/rspa.1990.0083

    Article  MATH  Google Scholar 

  29. Goodarzi M, Kwok CY, Tham LG (2015) A continuum-discrete model using Darcy’s law: formulation and verification. Int J Numer Anal Methods Geomech 39(3):327–342. https://doi.org/10.1002/nag.2319

  30. Guo N, Zhao J (2014) A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media. Int J Numer Methods Eng 99(11):789–818. https://doi.org/10.1002/nme.4702

    Article  MathSciNet  MATH  Google Scholar 

  31. Hashash YMA, Dashti S, Romero MI, Ghayoomi M, Musgrove M (2015) Evaluation of 1-D seismic site response modeling of sand using centrifuge experiments. Soil Dyn Earthq Eng 78:19–31. https://doi.org/10.1016/j.soildyn.2015.07.003

    Article  Google Scholar 

  32. Holzer TL, Hanks TC, Youd TL (1989) Dynamics of liquefaction during the 1987 Superstition Hills, California, earthquake. Science 244(4900):56–59. https://doi.org/10.1126/science.244.4900.56

    Article  Google Scholar 

  33. Idriss IM, Boulanger RW (2006) Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dyn Earthq Eng 26(2):115–130. https://doi.org/10.1016/j.soildyn.2004.11.023

    Article  Google Scholar 

  34. Jäger J (2005) New solutions in contact mechanics. WIT Press, Southampton

    Google Scholar 

  35. Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441(7094):727–730

    Article  Google Scholar 

  36. Kloss C, Goniva C, Hager A, Amberger S, Pirker S (2012) Models, algorithms and validation for opensource dem and CFD-DEM. Prog Comput Fluid Dyn 12(2/3):140–152

    Article  MathSciNet  Google Scholar 

  37. Kokusho T (2000) Correlation of pore-pressure B-value with P-wave velocity and Poisson’s ratio for imperfectly saturated sand or gravel. Soils Found 40(4):95–102. https://doi.org/10.3208/sandf.40.4_95

  38. Kramer S (2010) Evolutionary intensity measures for more accurate and informative liquefaction hazard evaluation. Tech. Rep. NEES-2010-0957, NHERI DesignSafe Data Depot. https://www.designsafe-ci.org/data/browser/public/nees.public/NEES-2010-0957.groups

  39. Kramer SL, Sideras SS, Greenfield MW (2016) The timing of liquefaction and its utility in liquefaction hazard evaluation. Soil Dyn Earthq Eng 91:133–146

    Article  Google Scholar 

  40. Ku T, Subramanian S, Moon SW, Jung J (2017) Stress dependency of shear-wave velocity measurements in soils. J Geotech Geoenviron Eng 143(2):04016092

    Article  Google Scholar 

  41. Kuhn MR (2005) Are granular materials simple? An experimental study of strain gradient effects and localization. Mech Mater 37(5):607–627. https://doi.org/10.1016/j.mechmat.2004.05.001

    Article  Google Scholar 

  42. Kuhn MR (2011) Implementation of the Jäger contact model for discrete element simulations. Int J Numer Methods Eng 88(1):66–82. https://doi.org/10.1002/nme.3166

    Article  MATH  Google Scholar 

  43. Kuhn MR (2021) DEMPLA and OVAL: programs for analyzing particle assemblies and for simulating wave propagation and liquefaction with the discrete element method. https://github.com/mrkuhn53/dempla

  44. Kuhn MR, Daouadji A (2018) Multi-diirectional behavior of granular materials and its relation to incremental elastoplasticity. Int J Solids Struct 152–153:305–323. https://doi.org/10.1016/j.ijsolstr.2018.07.005

    Article  Google Scholar 

  45. Kuhn MR, Daouadji A (2018) Quasi-static incremental behavior of granular materials: elastic-plastic coupling and micro-scale dissipation. J Mech Phys Solids 114:219–237. https://doi.org/10.1016/j.jmps.2018.02.019

    Article  MathSciNet  Google Scholar 

  46. Kuhn MR, Daouadji A (2020) Simulation of undrained quasi-saturated soil with pore pressure measurements using a discrete element (DEM) algorithm. Soils Found 60(5):1097–1111. https://doi.org/10.1016/j.sandf.2020.05.013

    Article  Google Scholar 

  47. Kuhn MR, Renken H, Mixsell A, Kramer S (2014) Investigation of cyclic liquefaction with discrete element simulations. J Geotech Geoenviron Eng 140(12):04014075. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001181

    Article  Google Scholar 

  48. Kutter BL, Chen YR, Shen CK (1994) Triaxial and torsional shear test results for sand. Tech. Rep. CR 94.003, Office of Naval Research, Arlington, VA

  49. Kwan WS (2015) Laboratory investigation into evaluation of sand liquefaction under transient loadings. Dissertation, University of Texas at Austin

  50. Lim KW, Andrade JE (2014) Granular element method for three-dimensional discrete element calculations. Int J Numer Anal Methods Geomech 38(2):167–188. https://doi.org/10.1016/j.cma.2012.06.012

    Article  Google Scholar 

  51. Lin X, Ng TT (1997) A three-dimensional discrete element model using arrays of ellipsoids. Géotechnique 47(2):319–329. https://doi.org/10.1680/geot.1997.47.2.319

    Article  Google Scholar 

  52. Lloret A, Alonso EE (1980) Consolidation of unsaturated soils including swelling and collapse behaviour. Géotechnique 30(4):449–477. https://doi.org/10.1680/geot.1980.30.4.449

    Article  Google Scholar 

  53. Maharjan M, Takahashi A (2013) Centrifuge model tests on liquefaction-induced settlement and pore water migration in non-homogeneous soil deposits. Soil Dyn Earthq Eng 55:161–169. https://doi.org/10.1016/j.soildyn.2013.09.002

    Article  Google Scholar 

  54. Manzari MT, El Ghoraiby M, Kutter BL, Zeghal M, Abdoun T, Arduino P, Armstrong RJ, Beaty M, Carey T, Chen Y et al (2018) Liquefaction experiment and analysis projects (LEAP): summary of observations from the planning phase. Soil Dyn Earthq Eng 113:714–743. https://doi.org/10.1016/j.soildyn.2017.05.015

    Article  Google Scholar 

  55. McManus KJ, Davis RO (1997) Dilation-induced pore fluid cavitation in sands. Géotechnique 47(1):173–177. https://doi.org/10.1680/geot.1997.47.1.173

    Article  Google Scholar 

  56. Mindlin RD (1949) Compliance of elastic bodies in contact. J. Appl. Mech. 16:259–268

    Article  MathSciNet  Google Scholar 

  57. Ng TT (2006) Input parameters of discrete element methods. J Eng Mech 132(7):723–729. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:7(723)

    Article  Google Scholar 

  58. Ordóñez GA (2000) SHAKE2000: A computer program for the 1D analysis of geotechnical earthquake engineering problems. Geomotions, LLC, USA, Lacey, WA, USA

  59. O’Sullivan C, Bray JD (2004) Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme. Eng Comput 21(2/3/4):278–303. https://doi.org/10.1108/02644400410519794

  60. Otsubo M, O’Sullivan C, Hanley KJ, Sim WW (2017) The influence of particle surface roughness on elastic stiffness and dynamic response. Géotechnique 67(5):452–459. https://doi.org/10.1680/jgeot.16.P.050

  61. Rahman M.M, Baki MAL, Lo SR (2014) Prediction of undrained monotonic and cyclic liquefaction behavior of sand with fines based on the equivalent granular state parameter. Int J Geomech 14(2):254–266. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000316

    Article  Google Scholar 

  62. Schnabel PB, Lysmer J, Seed HB (1972) SHAKE: a computer program for earthquake response of horizontally layered sites. Tech. Rep. Report EERC-72/12, Earthquake Engineering Research Center, University of California Berkeley

  63. Sharp MK (1999) Development of centrifuge based prediction charts for liquefaction and lateral spreading from cone penetration testing. Ph.D. Thesis, Rensselaer Polytechnic Institute, Trou, N.Y

  64. Sharp MK, Dobry R (2002) Sliding block analysis of lateral spreading based on centrifuge results. Int J Phys Model Geotech 2(2):13–32. https://doi.org/10.1680/ijpmg.2002.020202

    Article  Google Scholar 

  65. Sharp MK, Dobry R, Abdoun T (2003) Liquefaction centrifuge modeling of sands of different permeability. J Geotech Geoenviron Eng 129(12):1083–1091. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:12(1083)

    Article  Google Scholar 

  66. Shimizu Y (2004) Fluid coupling in PFC2D and PFC3D. In: Shimizu Y, Hart R, Cundall P (eds.) Numerical modeling in micromechanics via particle methods. In: Proceedings of the 2nd international PFC symposium, Kyoto, Japan, pp. 281–287. AA Balkema Leiden, Netherlands

  67. Sideras SS (2019) Evolutionary instensity measures for more accurate and informative evaluation of liquefaction triggering. Dissertation, University of Washington, Seattle, Wash

  68. Sitharam T, Vinod J (2008) Numerical simulation of liquefaction and pore pressure generation in granular materials using DEM. Int J Geotech Eng 2(2):103–113

    Article  Google Scholar 

  69. Stevens DK, Kim BI, Wilson DW, Kutter BL (1999) Comprehensive investigation of nonlinear site response–centrifuge data report for DKS02. Tech. Rep. Data Report UCD/CGMDR-99/02, Center for Geotechnical Modeling, Univ. of Cal., Davis

  70. Stevens DK, Kim BI, Wilson DW, Kutter BL (2001) Comprehensive investigation of nonlinear site response–centrifuge data report for DKS04. Tech. Rep. Data Report UCD/CGMDR-01/03, Center for Geotechnical Modeling, Univ. of Cal., Davis

  71. Suzuki K, Kuhn MR (2014) Uniqueness of discrete element simulations in monotonic biaxial shear tests. Int J Geomech 14(5):06014010. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000365

    Article  Google Scholar 

  72. Taboada-Urtuzuástegui (1995) Centrifuge modeling of earthquake-induced lateral spreading in sand using a laminar box. Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, N.Y

  73. Taboada-Urtuzuástegui VM, Dobry R (1998) Centrifuge modeling of earthquake-induced lateral spreading in sand. J Geotech Geoenviron Eng 124(12):1195–1206. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1195)

    Article  Google Scholar 

  74. Terzaghi K (1943) Theoretical soil mechanics. Wiley, New York

    Book  Google Scholar 

  75. Thevanayagam S, Kanagalingam T, Reinhorn A, Tharmendhira R, Dobry R, Pitman M, Abdoun T, Elgamal A, Zeghal M, Ecemis N et al (2009) Laminar box system for 1-g physical modeling of liquefaction and lateral spreading. Geotech Test J 32(5):438–449. https://doi.org/10.1520/GTJ102154

    Article  Google Scholar 

  76. Thornton C (2000) Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1):43–53. https://doi.org/10.1680/geot.2000.50.1.43

    Article  Google Scholar 

  77. Tripathi A, Khakhar DV (2011) Rheology of binary granular mixtures in the dense flow regime. Phys Fluids 23(11):113302. https://doi.org/10.1063/1.3653276

    Article  Google Scholar 

  78. Tsuji Y, Kawaguchi T, Tanaka T (1993) Discrete particle simulation of two-dimensional fluidized bed. Powder Technol 77(1):79–87. https://doi.org/10.1016/0032-5910(93)85010-7

    Article  Google Scholar 

  79. Xia H, Hu T (1991) Effects of saturation and back pressure on sand liquefaction. J Geotech Eng 117(9):1347–1362. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1347)

    Article  Google Scholar 

  80. Yong J (2002) Liquefaction resistance of sand in relation to P-wave velocity. Géotechnique 52(4):295–298. https://doi.org/10.1680/geot.2002.52.4.295

    Article  Google Scholar 

  81. Zhao S, Zhao J, Liang W (2021) A thread-block-wise computational framework for large-scale hierarchical continuum-discrete modeling of granular media. Int J Numer Methods Eng 122(2):579–608. https://doi.org/10.1002/nme.6549

    Article  MathSciNet  Google Scholar 

  82. Zienkiewicz OC, Bettess P (1982) Soils and other saturated porous media under transient, dynamic conditions. general formulation and the validity of various simplifying assumptions. In: Pande GN, Zienkiewicz OC (eds) Soil mechanics—transient and cyclic loads. Wiley, Chichester, pp 1–16

    Google Scholar 

Download references

Acknowledgements

The high-performance computer described in Sect. 4.5 was a generous donation from The Donald P and Darlene V Shiley Trust to the Donald P. Shiley School of Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Kuhn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Poromechanics of dry soil

A Poromechanics of dry soil

The poroelastic characteristics of dry soil are rarely considered in geomechanics, due to the wide difference in the stiffnesses of air and of the solid matrix. However, just as with water, the paper’s algorithm requires the stiffnesses of all pore fluids, whether water, air, or quasi-saturated water. The air of a dry soil is assumed to obey the ideal gas law,

$$\begin{aligned} pV_{\text {v}} = \bar{N}RT \end{aligned}$$
(38)

where \(\bar{N}\) is the gas substance (moles) of air in the void volume \(V_{\text {v}}\); T is the absolute temperature; and R is the ideal gas constant. Assuming that temperature is constant, the initial and current values of quantity \(pV_{\text {v}}/\bar{N}\) are equal, so that the current pressure is

$$\begin{aligned} p = p_{\text {o}} \frac{\bar{N}}{\bar{N}_{\text {o}}} \frac{V_{\text {vo}}}{V_{\text {v}}} \end{aligned}$$
(39)

where \(p_{\text {o}}\) is the initial air pressure; \(V_{\text {v}}\) and \(V_{\text {vo}}\) are the current and initial void volumes; and \(\bar{N}\) and \(\bar{N}_{\text {o}}\) are the current and initial moles of air. The ratio \(\bar{N}/\bar{N}_{\text {o}}\) is equal to the ratio \(\text {det}(\mathbf {F})/\text {det}(\mathbf {W})\), as described near the beginning of Sect. 3. Multiplying and dividing Eq. (39) by total soil volume \(V_{\text {o}}\) and noting that \(V_{\text {vo}}/V_{\text {o}}\) is the initial porosity \(n_{o}\), we have

$$\begin{aligned} p = p_{\text {o}} n_{\text {o}} \frac{\text {det}(\mathbf {F})}{\text {det}(\mathbf {W})} \frac{V_{\text {o}}}{V_{\text {v}}} \end{aligned}$$
(40)

The current void volume \(V_{\text {v}}\) is the difference of the total volume V and solid volume \(V_{\text {s}}\),

$$\begin{aligned} \begin{aligned} V_{\text {v}}&= V - V_{\text {s}} \\&= V_{\text {o}}\left[ \text {det}(\mathbf {F}) - (1-n_{\text {o}}) \left( 1 + \frac{\sigma _{kk}^{\prime }-\sigma _{\text {o},kk}^{\prime }}{3K_{\text {s}}} - \frac{p-p_{\text {o}}}{K_{\text {s}}} \right) \right] \end{aligned} \end{aligned}$$
(41)

where \(K_{\text {s}}\) is the bulk modulus of the solid grains; \(\text {det}(\mathbf {F})=V/V_{\text {o}}\) is the determinant (Jacobian) of the deformation gradient (i.e., the ratio of the current and initial soil volumes); and \(1-n_{\text {o}}=V_{\text {so}}/V_{\text {o}}\) is the initial solid fraction. This equation accounts for the combined changes in the volumes of the grains due to changes in the air pressure and in the contact forces, by assuming that the grains are composed of a linear-elastic material [8, 46, 82].

Substituting Eq. (41) into Eq. (40), we have the following quadratic equation for pressure p:

$$\begin{aligned}&Ap^{2} + Bp + C = 0\end{aligned}$$
(42)
$$\begin{aligned}&A = (1-n_{\text {o}}) / K_{\mathbf {s}}\end{aligned}$$
(43)
$$\begin{aligned}&B = \text {det}(\mathbf {F}) - (1-n_{\text {o}}) \left[ 1 + (\sigma _{kk}^{\prime }-\sigma _{\text {o},kk}^{\prime }) / 3K_{\text {s}} \right] \end{aligned}$$
(44)
$$\begin{aligned}&C = p_{\text {o}} n_{\text {o}} \text {det}(\mathbf {F}) / \text {det}(\mathbf {W}) \end{aligned}$$
(45)

and the following equation for fluid outflow \(\text {det}(\mathbf {W})\):

$$\begin{aligned} \begin{aligned} \text {det}(\mathbf {W}) &=\frac{p_{\text {o}} n_{\text {o}}\text {det}(\mathbf {F})}{p}\\&\Big /\left[ \text {det}(\mathbf {F}) - (1-n_{\text {o}}) \left( 1 + \frac{\sigma _{kk}^{\prime }-\sigma _{\text {o},kk}^{\prime }}{3K_{\text {s}}} - \frac{p-p_{\text {o}}}{K_{\text {s}}} \right) \right] \end{aligned} \end{aligned}$$
(46)

In a one-dimensional setting, \(\text {det}(\mathbf {W})=1+du_{3}/dX_{3}+dw_{3}/dX_{3}\) and \(\text {det}(\mathbf {F})=1+du_{3}/dX_{3}\), where \(w_{3}\) is the pore fluid displacement relative to the matrix displacement \(u_{3}\), and the \(X_{3}\) is the original position within the soil column.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuhn, M.R. Multi-scale simulation of wave propagation and liquefaction in a one-dimensional soil column: hybrid DEM and finite-difference procedure. Acta Geotech. 17, 2611–2632 (2022). https://doi.org/10.1007/s11440-021-01402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01402-7

Keywords

Navigation