Skip to main content
Log in

A multisurface elastoplastic model for frozen soil

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Many geotechnical engineering problems in the cold region, including cracking of pavements, damage to the foundations of structures, and fracture of pipelines are blamed due to the deformation and failure of frozen soils. In this study, cryogenic suction is used as one of the constitutive variables together with the solid-phase stress to model the joint influence of temperature and confining pressure on the constitutive behaviour of frozen soils. A nonlinear relationship is proposed to link cryogenic cohesion with cryogenic suction, to consider the strength increase due to the lowering of temperature. In the space of the solid-phase stress and cryogenic suction, loading-collapse yield surface, subloading surface, and unified hardening parameter are then integrated to produce a novel multisurface constitutive model for frozen soil. The proposed model can predict the mechanical behaviours such as softening/hardening and dilation/compression of frozen soil under various temperatures and stresses. Some special characteristics of frozen soil, including the deformation induced by ice segregation and softening related to pressure melting, can also be well explained by this model. The developed model is validated by using several triaxial compression test results of different frozen soils in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Alonso EE, Gens A, Josa A (1990) A constitutive model for partially saturated soils. Geotechnique 40(3):405–430. https://doi.org/10.1680/geot.1990.40.3.405

    Article  Google Scholar 

  2. Andersen GR, Swan CW, Ladd CC, Germaine JT (1995) Small-strain behavior of frozen sand in triaxial compression. Can Geotech J 32(3):428–451

    Article  Google Scholar 

  3. Arenson LU, Springman SM (2005) Mathematical descriptions for the behaviour of ice-rich frozen soils at temperatures close to 0 C. Can Geotech J 42(2):431–442

    Article  Google Scholar 

  4. Asaoka A, Nakano M, Noda T, Kaneda K (2000) Delayed compression/consolidation of natural clay due to degradation of soil structure. Soils Found 40(3):75–85. https://doi.org/10.3208/sandf.40.3_75

    Article  Google Scholar 

  5. Black PB (1995) Application of the Clapeyron equation to water and ice in porous media. CRREL, US Army Corps of Engineers

  6. Bragg RA, Andersland OB (1981) Strain rate, temperature, and sample size effects on compression and tensile properties of frozen soil. Eng Geol 18:35–46. https://doi.org/10.1016/0013-7952(81)90044-2

    Article  Google Scholar 

  7. Chamberlain E, Groves C, Perham R (1972) The mechanical behaviour of frozen earth materials under high pressure triaxial test conditions. Geotechnique 22(3):469–483. https://doi.org/10.1680/geot.1972.22.3.469

    Article  Google Scholar 

  8. Chang D, Lai YM, Yu F (2019) An elastoplastic constitutive model for frozen saline coarse sandy soil undergoing particle breakage. Acta Geotech 14:1757–1783

    Article  Google Scholar 

  9. Culley RW (1971) Effect of freeze-thaw cycling on stress-strain characteristics and volume change of a till subjected to repetitive loading. Can Geotech J 8(3):359–371. https://doi.org/10.1139/t71-038

    Article  Google Scholar 

  10. Coussy O (2005) Poromechanics of freezing materials. J Mech Phys Solids 53(8):1689–1718. https://doi.org/10.1016/j.jmps.2005.04.001

    Article  MATH  Google Scholar 

  11. Dagesse DF (2010) Freezing-induced bulk soil volume changes. Can J Soil Sci 90:389–401

    Article  Google Scholar 

  12. Drouin M, Michel B (1971) Les poussées d’origine thermique exercées parles couverts de glace sur les structures hydrauliques. Faculté des sciences, Université Laval, Quebec City, Que

    Google Scholar 

  13. Ghoreishian Amiri SA, Grimstad G, Kadivar M, Nordal S (2016) Constitutive model for rate-independent behavior of saturated frozen soils. Can Geotech J 53(10):1646–1657. https://doi.org/10.1139/cgj-2015-0467

    Article  Google Scholar 

  14. Hamilton AB (1966) Freezing shrinkage in compacted clays. Can Geotech J 3(1):1–17

    Article  Google Scholar 

  15. Han L, Ye GL, Li YH, Xia XH, Wang JH (2015) In situ monitoring of frost heave pressure during cross passage construction using ground-freezing method. Can Geotech J 53(3):530–539. https://doi.org/10.1139/cgj-2014-0486

    Article  Google Scholar 

  16. Hashiguchi K (1989) Subloading surface model in unconventional plasticity. Int J Solids Struct 25(8):917–945

    Article  Google Scholar 

  17. He P, Zhu YL, Cheng GD (2000) Constitutive models of frozen soil. Can Geotech J 37(4):811–816. https://doi.org/10.1139/t00-014

    Article  Google Scholar 

  18. He RX, Jin HJ (2010) Permafrost and cold-region environmental problems of the oil product pipeline from Golmud to Lhasa on the Qinghai-Tibet Plateau and their mitigation. Cold Reg Sci Technol 64(3):279–288

    Article  MathSciNet  Google Scholar 

  19. Henry KS (2000) A review of the thermodynamics of frost heave. CRREL, US Army Corps of Engineers

  20. Hoque MA, Pollard WH (2009) Pollard Arctic coastal retreat through block failure. Can Geotech J 46:1103–1115

    Article  Google Scholar 

  21. Hoekstra P (1966) Moisture movement in soils under temperature gradients with the cold-side temperature below freezing. Water Resour Res 2(2):241–250

    Article  Google Scholar 

  22. Horpibulsuk S, Liu MD, Liyanapathirana DS, Suebsuk J (2010) Behaviour of cemented clay simulated via the theoretical framework of the Structured Cam Clay model. Comput Geotech 37:1–9. https://doi.org/10.1016/j.compgeo.2009.06.007

    Article  Google Scholar 

  23. Konrad JM, Morgenstern NR (1981) The segregation potential of a freezing soil. Can Geotech J 18(4):482–491

    Article  Google Scholar 

  24. Konrad JM, Duquennoi C (1993) A model for water transport and ice lensing in freezing soils. Water Resour Res 29(9):3109–3124. https://doi.org/10.1029/93WR00773

    Article  Google Scholar 

  25. Koopmans RWR, Miller RD (1966) Soil freezing and soil water characteristic curves. Soil Sci Soc Am J 30:680–685. https://doi.org/10.2136/sssaj1966.03615995003000060011x

    Article  Google Scholar 

  26. Kurylyk BL, Watanabe K (2013) The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils. Adv Water Resour 60:160–177. https://doi.org/10.1016/j.advwatres.2013.07.016

    Article  Google Scholar 

  27. Ladanyi B (1972) An engineering theory of creep of frozen soils. Can Geotech J 9(1):63–80

    Article  Google Scholar 

  28. Lai YM, Liu SY, Wu ZW, Liu SY, Den XJ (2002) Approximate analysis for the coupled problem of temperature fields in cold region circular tunnels. Cold Reg Sci Technol 13(4):43–49

    Google Scholar 

  29. Lai Y, Jin L, Chang X (2009) Yield criterion and elasto-plastic damage constitutive model for frozen sandy soil. Int J Plast 25(6):1177–1205. https://doi.org/10.1016/j.ijplas.2008.06.010

    Article  MATH  Google Scholar 

  30. Lai Y, Yang Y, Chang X, Li S (2010) Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics. Int J Plast 26(10):1461–1484. https://doi.org/10.1016/j.ijplas.2010.01.007

    Article  MATH  Google Scholar 

  31. Lai Y, Xu X, Yu W, Qi J (2014) An experimental investigation of the mechanical behavior and a hyperplastic constitutive model of frozen loess. Int J Eng Sci 84:29–53. https://doi.org/10.1016/j.ijengsci.2014.06.011

    Article  Google Scholar 

  32. Lai Y, Liao M, Hu K (2016) A constitutive model of frozen saline sandy soil based on energy dissipation theory. Int J Plast 78:84–113. https://doi.org/10.1016/j.ijplas.2015.10.008

    Article  Google Scholar 

  33. Liu MD, Carter JP (2000) Modelling the destructuring of soils during virgin compression. Géotechnique 50:479–483. https://doi.org/10.1680/geot.2000.50.4.479

    Article  Google Scholar 

  34. Liu ZY, Liu JK, Li X, Fang JH (2019) Experimental study on the volume and strength change of an unsaturated silty clay upon freezing. Cold Reg Sci Technol 157:1–12. https://doi.org/10.1016/j.coldregions.2018.09.008

    Article  Google Scholar 

  35. Mageau DW, Morgenstern NR (1980) Observations on moisture migration in frozen soils. Can Geotech J 17(1):54–60

    Article  Google Scholar 

  36. Miller RD (1972) Freezing and heaving of saturated and unsaturated soils. Highw Res Rec 393:1–11

    Google Scholar 

  37. Morgenstern NR, Roggensack WD, Weaver JS (1980) The behaviour of friction piles in ice and ice-rich soils. Can Geotech J 17(3):405–415. https://doi.org/10.1139/t80-047

    Article  Google Scholar 

  38. Nguyen LD, Fatahi B, Khabbaz H (2014) A constitutive model for cemented clays capturing cementation degradation. Int J Plast 56:1–18. https://doi.org/10.1016/j.ijplas.2014.01.007

    Article  Google Scholar 

  39. Nishimura S, Gens A, Olivella S, Jardine RJ (2009) THM-coupled finite element analysis of frozen soil: formulation and application. Géotechnique 59:159–171. https://doi.org/10.1680/geot.2009.59.3.159

    Article  Google Scholar 

  40. Nixon JF (1978) Foundation design approaches in permafrost areas. Can Geotech J 15(1):96–112

    Article  Google Scholar 

  41. Nixon JF (1991) Discrete ice lens theory for frost heave in soils. Can Geotech J 28(6):843–859

    Article  Google Scholar 

  42. Nova R, Castellanza R, Tamagnini C (2003) A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation. Int J Numer Anal Meth Geomech 27:705–732. https://doi.org/10.1002/nag.294

    Article  MATH  Google Scholar 

  43. Parameswaran VR (1980) Deformation behaviour and strength of frozen sand. Can Geotech J 17(1):74–88. https://doi.org/10.1139/t80-007

    Article  Google Scholar 

  44. Rix HH (1969) Vertical movements and crack-width changes on highway pavement surfaces. Can Geotech J 6:253–270

    Article  Google Scholar 

  45. Roscoe KH, Burland JB (1968) On the generalized stress-strain behaviour of wet clay. In: Heyman J, Leckie FA (eds) Engineering plasticity. Cambridge University Press, Cambridge, pp 535–609

    Google Scholar 

  46. Rotta Loria AF, Frigo B, Chiaia B (2017) A non-linear constitutive model for describing the mechanical behaviour of frozen ground and permafrost. Cold Reg Sci Technol 133:63–69. https://doi.org/10.1016/j.coldregions.2016.10.010

    Article  Google Scholar 

  47. Schofield A, Wroth P (1968) Critical state soil mechanics. McGraw-Hill, New York

    Google Scholar 

  48. Simonsen E, Isacsson U (1999) Thaw weakening of pavement structures in cold regions. Cold Reg Sci Technol 29(2):135–151

    Article  Google Scholar 

  49. Sun DA, Matsuoka H, Yao YP (2000) An elastoplastic model for unsaturated soil in three-dimensional stresses. Soils Found 40(3):17–28

    Article  Google Scholar 

  50. Sun K, Tang L, Zhou A, Ling X (2020) An elastoplastic damage constitutive model for frozen soil based on the super/subloading yield surfaces. Comput Geotech 128:103842. https://doi.org/10.1016/j.compgeo.2020.103842

    Article  Google Scholar 

  51. Thomas HR, Cleall P, Li Y-C, Harris C, Kern-Luetschg M (2009) Modelling of cryogenic processes in permafrost and seasonally frozen soils. Géotechnique 59(3):173–184

    Article  Google Scholar 

  52. Ting J, Martin R, Ladd C (1983) Mechanisms of strength for frozen sand. J Geotechn Eng 109(10):1286–1302. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:10(1286)

    Article  Google Scholar 

  53. Vanneste M, Mienert J, Bünz S (2006) The Hinlopen Slide: a giant, submarine slope failure on the northern Svalbard margin, Arctic Ocean. Earth Planet Sci Lett 245(1–2):373–388

    Article  Google Scholar 

  54. Watanabe K, Wake T (2009) Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR. Cold Reg Sci Technol 59:34–41. https://doi.org/10.1016/j.coldregions.2009.05.011

    Article  Google Scholar 

  55. Xu G (2014) Hypoplastic constitutive models for frozen soil. Ph.D. dissertation, University of Natural Resources and Life Sciences, Vienna, Austria

  56. Xu G, Wu W, Qi J (2016) An extended hypoplastic constitutive model for frozen sand. Soils Found 56(4):704–711. https://doi.org/10.1016/j.sandf.2016.07.010

    Article  Google Scholar 

  57. Xu XT, Li QL, Xu GF (2020) Investigation on the behavior of frozen silty clay subjected to monotonic and cyclic triaxial loading. Acta Geotech 15:1289–1302

    Article  Google Scholar 

  58. Yamamoto Y, Springman SM (2014) Axial compression stress path tests on artificial frozen soil samples in a triaxial device at temperatures just below 0 C. Can Geotech J 51(10):1178–1195

    Article  Google Scholar 

  59. Yang Y, Gao F, Lai Y, Cheng H (2016) Experimental and theoretical investigations on the mechanical behavior of frozen silt. Cold Reg Sci Technol 130:59–65. https://doi.org/10.1016/j.coldregions.2016.07.008

    Article  Google Scholar 

  60. Yang Y, Lai Y, Dong Y, Li S (2010) The strength criterion and elastoplastic constitutive model of frozen soil under high confining pressures. Cold Reg Sci Technol 60(2):154–160. https://doi.org/10.1016/j.coldregions.2009.09.001

    Article  Google Scholar 

  61. Yao YP, Sun DA, Matsuoka H (2008) A unified constitutive model for both clay and sand with hardening parameter independent on stress path. Comput Geotech 35(2):210–222

    Article  Google Scholar 

  62. Yao YP, Hou W, Zhou AN (2009) UH model: three-dimensional unified hardening model for overconsolidated clays. Geotechnique 59(5):451–469. https://doi.org/10.1680/geot.2007.00029

    Article  Google Scholar 

  63. Yao YP, Zhou AN (2013) Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays. Géotechnique 63(15):1328–1345

    Article  Google Scholar 

  64. Zhang Y, Michalowski RL (2015) Thermal-hydro-mechanical analysis of frost heave and thaw settlement. J Geotech Geoenviron Eng 141:04015027. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001305

    Article  Google Scholar 

  65. Zhang D, Liu E, Liu X, Zhang G, Song B (2017) A new strength criterion for frozen soils considering the influence of temperature and coarse-grained contents. Cold Reg Sci Technol 143:1–12. https://doi.org/10.1016/j.coldregions.2017.08.006

    Article  Google Scholar 

  66. Zhang SJ, Lai YM, Zhang XF, Pu YB, Yu WB (2004) Study on the damage propagation of surrounding rock from a cold-region tunnel under freeze–thaw cycle condition. Tunn Undergr Space Technol 19(3):295–302

    Article  Google Scholar 

  67. Zhou A, Sheng D (2009) Yield stress, volume change, and shear strength behaviour of unsaturated soils: validation of the SFG model. Can Geotech J 46(9):1034–1045

    Article  Google Scholar 

  68. Zhou AN, Sheng DC (2015) An advanced hydro-mechanical constitutive model for unsaturated soils with different initial densities. Comput Geotech 63:46–66

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (52078021) and Chinese Scholarship Council (201906125027) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annan Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Derivation of elastoplastic constitutive flexibility matrix C

The partial differentials of the yield function to the stress in Eqs. (30), (31) and (32) are presented are as follows:

$$\begin{array}{*{20}c} {\frac{{\partial f_{1} }}{\partial p} = \frac{{M^{2} \left( {p + p_{{\text{s}}} } \right)^{2} - q^{2} }}{{\left( {p + p_{{\text{s}}} } \right)\left[ {M^{2} \left( {p + p_{{\text{s}}} } \right)^{2} + q^{2} } \right]}}} \\ \end{array}$$
(40)
$$\begin{array}{*{20}c} {\frac{{\partial f_{1} }}{\partial q} = \frac{2q}{{M^{2} \left( {p + p_{{\text{s}}} } \right)^{2} + q^{2} }}} \\ \end{array}$$
(41)
$$\begin{aligned} \frac{{\partial f_{1} }}{\partial S} & = - \left[ {\frac{{k_{t} }}{{k_{t} + S}} - \frac{{k_{t} S}}{{\left( {k_{t} + S} \right)^{2} }}} \right]\frac{{\left[ {M^{2} \left( {p + p_{{\text{s}}} } \right)^{2} \left( {p - p_{x} } \right) + q^{2} \left( {p + p_{x} + 2p_{{\text{s}}} } \right)} \right]}}{{\left( {p + p_{{\text{s}}} } \right)\left( {p_{x} + p_{{\text{s}}} } \right)\left[ {M^{2} \left( {p + p_{{\text{s}}} } \right)^{2} + q^{2} } \right]}} \\ & \quad - \frac{{\ln \left( {\frac{{p_{x0} }}{{p_{c} }}} \right)\lambda_{0} \beta \left( {\lambda_{0} - \kappa } \right)\left( {1 - r} \right)p_{c} \left( {\frac{{p_{x0} }}{{p_{c} }}} \right)^{{X_{1} }} \exp \left( { - \beta S} \right)}}{{\left( {p_{x} + p_{{\text{s}}} } \right)\left( {\lambda - \kappa } \right)^{2} }} \\ \end{aligned}$$
(42)
$$\begin{array}{*{20}c} {\frac{{\partial f_{1} }}{{\partial p_{x} }} = - \frac{1}{{p_{x} + p_{s} }}} \\ \end{array}$$
(43)

where \(X_{1} = \left( {\lambda_{0} - \lambda } \right)/\left( {\lambda - \kappa } \right)\).

The movement of the yield surface is controlled by the increment of \(\varepsilon_{v}^{mp}\) and \(\varepsilon_{v}^{sp}\), i.e. \(p_{x} = F\left( {\varepsilon_{v}^{mp} , \varepsilon_{v}^{sp} } \right)\). Therefore, by using the chain rule, the partial differential of \(p_{x}\) can be obtained as:

$$\begin{array}{*{20}c} {\frac{{\partial p_{x} }}{{\partial \varepsilon_{v}^{mp} }} = \frac{{\partial p_{x} }}{{\partial p_{x0} }}\frac{{\partial p_{x0} }}{\partial H}\frac{\partial H}{{\partial \varepsilon_{v}^{mp} }} } \\ \end{array}$$
(44)
$$\begin{array}{*{20}c} {\frac{{\partial p_{x} }}{{\partial \varepsilon_{v}^{sp} }} = \frac{{\partial p_{x} }}{{\partial p_{x0} }}\frac{{\partial p_{x0} }}{\partial H}\frac{\partial H}{{\partial \varepsilon_{v}^{sp} }} } \\ \end{array}$$
(45)

where

$$\begin{array}{*{20}c} {\frac{{\partial p_{x} }}{{\partial p_{x0} }} = X_{1} \left( {\frac{{p_{x0} }}{{p_{c} }}} \right)^{{X_{1} - 1}} } \\ \end{array}$$
(46)
$$\begin{array}{*{20}c} {\frac{{\partial p_{x0} }}{\partial H} = c_{p} p_{x0} } \\ \end{array}$$
(47)
$$\begin{array}{*{20}c} {\frac{\partial H}{{\partial \varepsilon_{v}^{mp} }} = \frac{1}{{\Omega }}} \\ \end{array}$$
(48)
$$\begin{array}{*{20}c} {\frac{\partial H}{{\partial \varepsilon_{v}^{sp} }} = \frac{1}{{\Omega }}} \\ \end{array}$$
(49)

Appendix 2: The elements in the matrix \({\varvec{C}}\)

The elements in the matrix are as follows:

$$\begin{array}{*{20}c} {C_{11} = A_{0} \left( {A_{1} + A_{4} } \right) + \frac{1}{{K_{m} }}} \\ \end{array}$$
(50)
$$\begin{array}{*{20}c} {C_{12} = A_{0} \left( {A_{2} + A_{5} } \right)} \\ \end{array}$$
(51)
$$\begin{array}{*{20}c} {C_{13} = A_{0} \left( {A_{3} + A_{6} } \right) + \frac{1}{{K_{s} }}} \\ \end{array}$$
(52)
$$\begin{array}{*{20}c} {C_{21} = \chi A_{0} A_{1} } \\ \end{array}$$
(53)
$$\begin{array}{*{20}c} {C_{22} = \chi A_{0} A_{2} + \frac{1}{3G}} \\ \end{array}$$
(54)
$$\begin{array}{*{20}c} {C_{23} = \chi A_{0} A_{3} } \\ \end{array}$$
(55)

where

$$\begin{array}{*{20}c} {A_{0} = \frac{1}{{\frac{{\partial f_{1} }}{{\partial p_{x} }}\frac{{\partial p_{x} }}{{\partial p_{x0} }}\frac{{\partial p_{x0} }}{\partial H} \left( {\frac{\partial H}{{\partial \varepsilon_{v}^{sp} }}\frac{{\partial S_{{{\text{seg}}}} }}{{\partial \varepsilon_{v}^{mp} }} - \frac{\partial H}{{\partial \varepsilon_{v}^{mp} }}\frac{{\partial S_{{{\text{seg}}}} }}{{\partial \varepsilon_{v}^{sp} }} } \right)}}} \\ \end{array}$$
(56)
$$\begin{array}{*{20}c} {A_{1} = \frac{{\partial f_{1} }}{\partial p}\frac{{\partial S_{{{\text{seg}}}} }}{{\partial \varepsilon_{v}^{sp} }}} \\ \end{array}$$
(57)
$$\begin{array}{*{20}c} {A_{2} = \frac{{\partial f_{1} }}{\partial q}\frac{{\partial S_{{{\text{seg}}}} }}{{\partial \varepsilon_{v}^{sp} }}} \\ \end{array}$$
(58)
$$\begin{array}{*{20}c} {A_{3} = - \frac{{\frac{{\partial f_{2} }}{\partial S}\frac{{\partial f_{1} }}{{\partial p_{x} }}\frac{{\partial p_{x} }}{{\partial p_{x0} }}\frac{{\partial p_{x0} }}{\partial H}\frac{\partial H}{{\partial \varepsilon_{v}^{sp} }} - \frac{{\partial f_{1} }}{\partial S}\frac{{\partial f_{2} }}{{\partial S_{{{\text{seg}}}} }}\frac{{\partial S_{{{\text{seg}}}} }}{{\partial \varepsilon_{v}^{sp} }}}}{{\frac{{\partial f_{2} }}{{\partial S_{{{\text{seg}}}} }}}}} \\ \end{array}$$
(59)
$$\begin{array}{*{20}c} {A_{4} = - \frac{{\partial f_{1} }}{\partial p}\frac{{\partial S_{{{\text{seg}}}} }}{{\partial \varepsilon_{v}^{mp} }}} \\ \end{array}$$
(60)
$$\begin{array}{*{20}c} {A_{5} = - \frac{{\partial f_{1} }}{\partial q}\frac{{\partial S_{{{\text{seg}}}} }}{{\partial \varepsilon_{v}^{mp} }}} \\ \end{array}$$
(61)
$$\begin{array}{*{20}c} {A_{6} = \frac{{\frac{{\partial f_{2} }}{\partial S}\frac{{\partial f_{1} }}{{\partial p_{x} }}\frac{{\partial p_{x} }}{{\partial p_{x0} }}\frac{{\partial p_{x0} }}{\partial H}\frac{\partial H}{{\partial \varepsilon_{v}^{mp} }} - \frac{{\partial f_{1} }}{\partial S}\frac{{\partial f_{2} }}{{\partial S_{{{\text{seg}}}} }}\frac{{\partial S_{{{\text{seg}}}} }}{{\partial \varepsilon_{v}^{mp} }}}}{{\frac{{\partial f_{2} }}{{\partial S_{{{\text{seg}}}} }}}}} \\ \end{array}$$
(62)
$$ \begin{array}{*{20}c} {\chi = \frac{{\frac{{\partial f_{1} }}{\partial q}}}{{\frac{{\partial f_{1} }}{\partial p}}}} \\ \end{array}, K_{m}=K, K_{s}=\frac{3(1+e_{0})(S+p_{at})}{\kappa_s}$$
(63)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, K., Zhou, A. A multisurface elastoplastic model for frozen soil. Acta Geotech. 16, 3401–3424 (2021). https://doi.org/10.1007/s11440-021-01391-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01391-7

Keywords

Navigation