Skip to main content
Log in

Size distribution of free particles in soils: a geometric modelling approach

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Suffusion is a typical form of internal erosion for gravel soils in which fine particles are detached by seepage and transport by water through pores. The prediction of erodible particles can improve the assessment of the development of suffusion. The current research on the composition of erodible particles is not sufficiently detailed. The content of erodible particles cannot be accurately determined for a particular gradation. In this paper, a geometric method of generating a particle packing model is proposed. The particles are classified as free or skeleton particles depending on their coordination numbers; thus, their particle size distributions are obtained. Soils with different gradations were analysed using the proposed method. The results indicated that if the grading curve of a soil can be expressed using a fractal relationship, the gradation of free particles also satisfies an exponential function. This is useful in promoting the research on establishing accurate internal erosion criteria, evaluating the performance of filter layers, and predicting the degree of seepage failure caused by internal erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Åberg B (1993) Washout of grains from filtered sand and gravel materials. J Geotech Eng 119:36–53. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(36)

    Article  Google Scholar 

  2. Andrianatrehina L, Souli H, Rech J et al (2017) Determination of the maximum diameter of free fines to assess the internal stability of coarse granular materials. Eur J Environ Civ Eng 21:332–347. https://doi.org/10.1080/19648189.2015.1116468

    Article  Google Scholar 

  3. Bagi K (2005) An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granular Matter 7:31–43. https://doi.org/10.1007/s10035-004-0187-5

    Article  MATH  Google Scholar 

  4. Bi J, Luo X, Shen H, Zhang H (2018) Fractal dimensions of granular materials based on grading curves. J Mater Civ Eng 30:04018083. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002255

    Article  Google Scholar 

  5. Bittelli M, Campbell GS, Flury M (1999) Characterization of particle-size distribution in soils with a fragmentation model. Soil Sci Soc Am J 63:782–788. https://doi.org/10.2136/sssaj1999.634782x

    Article  Google Scholar 

  6. Bonelli S (2012) Erosion of Geomaterials. ISTE, London

    Book  Google Scholar 

  7. Burenkova VV (1993) Assessment of Suffusion in Non-Cohesive and Graded Soils. In: Brauns J, Schuler U, Heibum M (Eds) Proceedings of the 1st International Conference Geo-Filters. Balkema, Karsruhe, Germany, 357–360

  8. Cividini A, Bonomi S, Vignati GC, Gioda G (2009) Seepage-induced erosion in granular soil and consequent settlements. Int J Geomech 9:187–194. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(187)

    Article  Google Scholar 

  9. Cui L, O’Sullivan C (2003) Analysis of a triangulation based approach for specimen generation for discrete element simulations. GM 5:135–145. https://doi.org/10.1007/s10035-003-0145-7

    Article  MATH  Google Scholar 

  10. Einav I (2007) Breakage mechanics—part I: theory. J Mech Phys Solids 55:1274–1297. https://doi.org/10.1016/j.jmps.2006.11.003

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng YT, Han K, Owen DRJ (2003) Filling domains with disks: an advancing front approach. Int J Numer Meth Engng 56:699–713. https://doi.org/10.1002/nme.583

    Article  MATH  Google Scholar 

  12. Ferrez J-A (2001) Dynamic Triangulations for Efficient 3D Simulation of Granular Materials. Ph.D Thesis, Ecole Polytechnique Federal de Lausanne

  13. Foster M, Fell R, Spannagle M (2000) The statistics of embankment dam failures and accidents. Can Geotech J 37:1000–1024. https://doi.org/10.1139/t00-030

    Article  Google Scholar 

  14. Ghanbarian-Alavijeh B, Millán H, Huang G (2011) A review of fractal, prefractal and pore-solid-fractal models for parameterizing the soil water retention curve. Can J Soil Sci 91:1–14. https://doi.org/10.4141/cjss10008

    Article  Google Scholar 

  15. Han K, Feng YT, Owen DRJ (2005) Sphere packing with a geometric based compression algorithm. Powder Technol 155:33–41. https://doi.org/10.1016/j.powtec.2005.04.055

    Article  Google Scholar 

  16. Indraratna B, Nguyen VT, Rujikiatkamjorn C (2011) Assessing the potential of internal erosion and suffusion of granular soils. J Geotech Geoenviron Eng 137:550–554. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000447

    Article  Google Scholar 

  17. Jentsch H, Salehi Sadaghiani MR, Winkler P, Witt KJ (2014) Experimental investigation – influence of the shape of the gradation curve on the soil structure. In: Cheng L, Draper S, An H (eds) Proceeding of the 7th International Conference on Scour and Erosion. CRC Press, Perth, Australia, pp 105–110

    Google Scholar 

  18. Jentsch H, Winkler P, Salehi Sadaghiani MR et al (2016) Experimental identification of the dominant fabric in widely graded soils. In: Press CRC (ed) Proceeding of the 8th International Conference on Scour and Erosion. Uk, Oxford, pp 439–444

    Google Scholar 

  19. Jerier J-F, Imbault D, Donze F-V, Doremus P (2009) A geometric algorithm based on tetrahedral meshes to generate a dense polydisperse sphere packing. Granular Matter 11:43–52. https://doi.org/10.1007/s10035-008-0116-0

    Article  MATH  Google Scholar 

  20. Jiang MJ, Konrad JM, Leroueil S (2003) An efficient technique for generating homogeneous specimens for DEM studies. Comput Geotech 30:579–597. https://doi.org/10.1016/S0266-352X(03)00064-8

    Article  Google Scholar 

  21. Kenney TC, Lau D (1985) Internal Stability of Granular Filters. Can Geotech J 22:215–225. https://doi.org/10.1139/t85-029

    Article  Google Scholar 

  22. Kozak E, Sokołowska Z, Stępniewski W et al (1996) A modified number-based method for estimating fragmentation fractal dimensions of soils. Soil Sci Soc Am J 60:1291–1297. https://doi.org/10.2136/sssaj1996.03615995006000050002x

    Article  Google Scholar 

  23. Kézdi Á (1979) Soil Physics: Selected Topics. Elsevier, Amsterdam

    Google Scholar 

  24. Lei X, Yang Z, He S et al (2017) Numerical investigation of rainfall-induced fines migration and its influences on slope stability. Acta Geotech 12:1431–1446. https://doi.org/10.1007/s11440-017-0600-y

    Article  Google Scholar 

  25. Liu C (2021) Matrix Discrete Element Analysis of Geological and Geotechnical Engineering. Springer Singapore

  26. Martínez-Mena M, Deeks LK, Williams AG (1999) An evaluation of a fragmentation fractal dimension technique to determine soil erodibility. Geoderma 90:87–98. https://doi.org/10.1016/S0016-7061(98)00097-4

    Article  Google Scholar 

  27. Perfect E, Kay BD (1991) Fractal theory applied to soil aggregation. Soil Sci Soc Am J 55:1552–1558. https://doi.org/10.2136/sssaj1991.03615995005500060009x

    Article  Google Scholar 

  28. Perfect E, Rasiah V, Kay BD (1992) Fractal dimensions of soil aggregate-size distributions calculated by number and mass. Soil Sci Soc Am J 56:1407–1409. https://doi.org/10.2136/sssaj1992.03615995005600050012x

    Article  Google Scholar 

  29. Perrier E, Bird N, Rieu M (1999) Generalizing the fractal model of soil structure: the pore—solid fractal approach. Geoderma 88:47–74. https://doi.org/10.1016/S0166-2481(00)80005-7

    Article  Google Scholar 

  30. Salehi Sadaghiani MR, Jentsch H, Faulstich K et al (2014) DEM Modeling and Identification of Representative Element Volume of Soil Skeleton. In: Hicks MA, Brinkgreve RBJ, Rohe A (eds) Proceeding of the 8th European Conference on Numerical Methods in Geotechnical Engineering. CRC Press, Delft, The Netherlands

    Google Scholar 

  31. Salehi Sadaghiani M, Witt KJ, Jentsch H (2012) A Statistical Approach to Identify Mobile Particles of Internally Unstable Granular Soils. Proceeding of the 6th International Conference of Scour and Erosion. France, Paris, pp 132–138

    Google Scholar 

  32. Salehi Sadaghiani MR (2016) Suffusion Phenomenon in Widely Graded Soils - Influence of Homogeneity. Ph.D Thesis, Bauhaus-Universität Weimar

  33. Scholtès L, Hicher P-Y, Sibille L (2010) Multiscale approaches to describe mechanical responses induced by particle removal in granular materials. Comptes Rendus Mécanique 338:627–638. https://doi.org/10.1016/j.crme.2010.10.003

    Article  MATH  Google Scholar 

  34. Shire T, O’Sullivan C, Hanley KJ, Fannin RJ (2014) Fabric and effective stress distribution in internally unstable soils. J Geotech Geoenviron Eng 140:04014072. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001184

    Article  Google Scholar 

  35. Skempton AW, Brogan JM (1994) Experiments on piping in sandy gravels. Géotechnique 44:449–460. https://doi.org/10.1680/geot.1994.44.3.449

    Article  Google Scholar 

  36. Sterpi D (2003) Effects of the erosion and transport of fine particles due to seepage flow. Int J Geomech 3:111–122. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:1(111)

    Article  Google Scholar 

  37. Terzaghi K (1943) Theoretical Soil Mechanics. John Wiley & Sons Inc, Hoboken, NJ, USA

    Book  Google Scholar 

  38. Thevanayagam S, Shenthan T, Mohan S, Liang J (2002) Undrained fragility of clean sands, silty sands, and sandy silts. J Geotech Geoenviron Eng 128:849–859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849)

    Article  Google Scholar 

  39. Thomas PA (1997) Discontinuous deformation analysis of particulate media

  40. To HD, Galindo-Torres SA, Scheuermann A (2016) Sequential sphere packing by trilateration equations. Granular Matter 18:70. https://doi.org/10.1007/s10035-016-0666-5

    Article  Google Scholar 

  41. Turcotte DL (1986) Fractals and fragmentation. J Geophys Res 91:1921. https://doi.org/10.1029/JB091iB02p01921

    Article  Google Scholar 

  42. Turcotte DL (1989) Fractals in geology and geophysics. Pure Appl Geophys 131:26

    Article  Google Scholar 

  43. Tyler SW, Wheatcraft SW (1992) Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Sci Soc Am J 56:362–369. https://doi.org/10.2136/sssaj1992.03615995005600020005x

    Article  Google Scholar 

  44. Wan CF (2006) Experimental Investigation of Piping Erosion and Suffusion of Soils in Embankment Dams and Their Foundations. Ph.D Thesis, University of New South Wales

  45. Winkler P, Jentsch H, Salehi Sadaghiani M, Witt K (2016) Numerical Investigation of the Particle Skeleton of Widely Graded Soils Prone to Suffusion. In: Harris J, Whitehouse R, Moxon S (eds) Proceeding of the 8th International Conference on Scour and Erosion. CRC Press, Oxford, Uk, pp 149–154

    Google Scholar 

  46. Xu Y, Jiang H, Chu F, Liu C (2014) Fractal model for surface erosion of cohesive sediments. Fractals 22:1440006. https://doi.org/10.1142/S0218348X14400064

    Article  Google Scholar 

  47. Xu YF, Sun DA (2002) A fractal model for soil pores and its application to determination of water permeability. Physica A 316:56–64. https://doi.org/10.1016/S0378-4371(02)01331-6

    Article  Google Scholar 

  48. Xu Y, Zhang LM (2009) Breaching Parameters for Earth and Rockfill Dams. J Geotech Geoenviron Eng 135:1957–1970. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000162

    Article  Google Scholar 

  49. Young IM, Crawford JW, Anderson A, McBratney A (1997) Comment on number-size distributions, soil structure, and fractals. Soil Sci Soc Am J 61:1799–1800. https://doi.org/10.2136/sssaj1997.03615995006100060036x

    Article  Google Scholar 

  50. Zhang F, Li M, Peng M et al (2019) Three-dimensional DEM modeling of the stress-strain behavior for the gap-graded soils subjected to internal erosion. Acta Geotech 14:487–503. https://doi.org/10.1007/s11440-018-0655-4

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Dam Safety Research Centre of China (Grant No. CX2019B08) and the National Natural Science Foundation of China (Grant No. 51479112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, J., Zhang, H., Luo, X. et al. Size distribution of free particles in soils: a geometric modelling approach. Acta Geotech. 16, 3849–3866 (2021). https://doi.org/10.1007/s11440-021-01356-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01356-w

Keywords

Navigation