Skip to main content
Log in

Investigation of in situ thermomechanical behaviors of soil around an energy pile with flat dilatometer tests

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

An energy pile alters the ground temperature fields around it, which may lead to uneven settlements and a higher risk of failure. The thermomechanical behaviors of soils have been studied extensively in laboratory experiments, while in situ investigations are rare. In this research, flat dilatometer tests (DMTs) are first employed to investigate the thermomechanical behaviors of soil under in situ conditions. The soils were heated by a full-scale precast high-strength concrete (PHC) energy pile, and a series of DMTs were conducted. The results show that temperature changes had a substantial impact on the DMT data of the silt and clay layers. The measured pressures p0 and p1 of the silt and clay layers decreased with increasing ground temperature, and the measured pressure p2 of the silt and clay layers decreased at the beginning and then increased with increasing ground temperature. Although the silt and clay layers have similar variations in the measured pressures, the clay layer has a greater thermal response than the silt layer. Finally, the critical state soil mechanics theory is used to analyze the pore water pressure and thermomechanical properties of in situ overconsolidated soil. The results indicate that the elastic region (yield surface) and mean effective stress of in situ soil decrease with increasing ground temperature, potentially resulting in more irreversible deformation and a higher probability of failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abuel-Naga HM, Bergado DT, Ramana GV, Grino L, Rujivipat P, Thet Y (2006) Experimental evaluation of engineering behavior of soft Bangkok clay under elevated temperature. J Geotech Geoenviron 132(7):902–910. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:7(902)

    Article  Google Scholar 

  2. Abuel-Naga HM, Bergado DT, Bouazza A (2007) Thermally induced volume change and excess pore water pressure of soft Bangkok clay. Eng Geol 89(1):144–154. https://doi.org/10.1016/j.enggeo.2006.10.002

    Article  Google Scholar 

  3. Abuel-Naga HM, Bergado DT, Bouazza A, Ramana GV (2007) Volume change behaviour of saturated clays under drained heating conditions: experimental results and constitutive modeling. Can Geotech J 44(8):942–956. https://doi.org/10.1139/T07-031

    Article  Google Scholar 

  4. Adam D, Markiewicz R (2009) Energy from earth-coupled structures, foundations, tunnels and sewers. Geotechnique 59(3):229–236. https://doi.org/10.1680/geot.2009.59.3.229

    Article  Google Scholar 

  5. ASTM D6635-15 (2015) Standard test method for performing the flat plate dilatometer. ASTM, West Conshohocken. https://doi.org/10.1520/d6635-15

  6. ASTM D2487-17e1 (2017) Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM, West Conshohocken. https://doi.org/10.1520/D2487-17E01

  7. Baldi G, Hueckel T, Pellegrini R (1988) Thermal volume changes of the mineral–water system in low-porosity clay soils. Can Geotech J 25(4):807–825. https://doi.org/10.1139/t88-089

    Article  Google Scholar 

  8. Baligh MM, Scott RF (1975) Quasi-static deep penetration in clays. J Geotech Geoenviron 101:1119–1133. https://doi.org/10.1016/0148-9062(76)90247-3

    Article  Google Scholar 

  9. Brandl H (2006) Energy foundations and other thermo-active ground structures. Geotechnique 56(2):81–122. https://doi.org/10.1680/geot.2006.56.2.81

    Article  Google Scholar 

  10. Burghignoli A, Desideri A, Miliziano S (2000) A laboratory study on the thermomechanical behaviour of clayey soils. Can Geotech J 37(4):764–780. https://doi.org/10.1139/cgj-37-4-764

    Article  Google Scholar 

  11. Campanella RG, Mitchell JK (1968) Influence of temperature variations on soil behavior. J Soil Mech Found Div 94(3):709–734. https://doi.org/10.1061/JSFEAQ.0001136

    Article  Google Scholar 

  12. Comsol multiphysics, finite element analysis and engineering simulation software (Version 5.5), Software material library, 2019

  13. De Bruyn D, Thimus JF (1996) The influence of temperature on mechanical characteristics of Boom clay: the results of an initial laboratory programme. Eng Geol 41(1–4):117–126. https://doi.org/10.1016/0013-7952(95)00029-1

    Article  Google Scholar 

  14. Fu D, Zhang Y, Yan Y (2020) Bearing capacity of a side-rounded suction caisson foundation under general loading in clay. Comput Geotech. https://doi.org/10.1016/j.compgeo.2020.103543

    Article  Google Scholar 

  15. Graham J, Tanaka N, Crilly T, Alfaro M (2001) Modified cam-clay modelling of temperature effects in clays. Can Geotech J 38(3):608–621. https://doi.org/10.1139/t00-125

    Article  Google Scholar 

  16. Guo YM, Zhang GZ, Liu SY (2018) Investigation on the thermal response of full-scale PHC energy pile and ground temperature in multi-layer strata. Appl Therm Eng 143:836–848. https://doi.org/10.1016/j.applthermaleng.2018.08.005

    Article  Google Scholar 

  17. Guo Y, Zhang G, Liu S (2020) Temperature effects on the in-situ mechanical response of clayey soils around an energy pile evaluated by CPTU. Eng Geol 276:105712. https://doi.org/10.1016/j.enggeo.2020.105712

    Article  Google Scholar 

  18. Houston SL, Houston WN, Williams ND (1985) Thermo-mechanical behavior of seafloor sediments. J Geotech Eng 111(11):1249–1263. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:11(1249)

    Article  Google Scholar 

  19. Hueckel T, Baldi G (1990) Thermoplasticity of saturated clays: experimental constitutive study. J Geotech Eng 116(12):1778–1796. https://doi.org/10.1061/(asce)0733-9410(1990)116:12(1778)

    Article  Google Scholar 

  20. Hueckel T, Pellegrini R (1991) Thermo–plastic modeling of undrained failure of saturated clay due to heating. Soils Found 31(3):1–16. https://doi.org/10.3208/sandf1972.31.3_1

    Article  Google Scholar 

  21. Hueckel T, Pellegrini R (1992) Effective stress and water pressure in saturated clays during heating–cooling cycles. Can Geotech J 29(6):1095–1102. https://doi.org/10.1139/t92-126

    Article  Google Scholar 

  22. Hueckel T, François B, Laloui L (2009) Explaining thermal failure in saturated clays. Geotechnique 59(3):197–212. https://doi.org/10.1680/geot.2009.59.3.197

    Article  Google Scholar 

  23. ISO 22007–2 (2008) Plastics-determination of thermal conductivity and thermal diffusivity-Part 2: Transient plane heat source (hot disc) method. International Organization for Standardization (ISO), Geneva, Switzerland

  24. Kouretzis GP, Ansari Y, Pineda J, Kelly R, Sheng D (2015) Numerical evaluation of clay disturbance during blade penetration in the flat dilatometer test. Geotech Lett 5(3):91–95. https://doi.org/10.1680/jgele.15.00026

    Article  Google Scholar 

  25. Laloui L, Cekerevac C (2003) Thermo-plasticity of clays: an isotropic yield mechanism. Comput Geotech 30(8):649–660. https://doi.org/10.1016/j.compgeo.2003.09.001

    Article  Google Scholar 

  26. Laloui L, Cekerevac C (2008) Numerical simulation of the non-isothermal mechanical behaviour of soils. Comput Geotech 35(5):729–745. https://doi.org/10.1016/j.compgeo.2007.11.007

    Article  MATH  Google Scholar 

  27. Laloui L, Nuth M, Vulliet L (2006) Experimental and numerical investigations of the behaviour of a heat exchanger pile. Int J Numer Anal Met 30(8):763–781. https://doi.org/10.1002/nag.499

    Article  Google Scholar 

  28. Lingnau B, Graham J, Tanaka N (1995) Isothermal modeling of sand–bentonite mixtures at elevated temperatures. Can Geotech J 32(1):78–88. https://doi.org/10.1139/t95-006

    Article  Google Scholar 

  29. Marchetti S (1980) In Situ Tests by Flat Dilatometer. J Geotech Geoenviron 106(3):299–321. https://doi.org/10.1061/AJGEB6.0000934

    Article  Google Scholar 

  30. Marques MES, Leroueil S, de Soares Almeida MdS (2004) Viscous behaviour of St-Roch-de-l’Achigan clay. Quebec Can Geotech J 41(1):25–38. https://doi.org/10.1139/t03-068

    Article  Google Scholar 

  31. Randolph MF, Carter J, Wroth C (1979) Driven piles in clay—the effects of installation and subsequent consolidation. Geotechnique 29(4):361–393. https://doi.org/10.1680/geot.1979.29.4.361

    Article  Google Scholar 

  32. Rui Y, Soga K (2019) Thermo-hydro-mechanical coupling analysis of a thermal pile. P I Civil Eng-Geotec 172(2):155–173. https://doi.org/10.1680/jgeen.16.00133

    Article  Google Scholar 

  33. Tanaka N, Graham J, Crilly T (1997) Stress-strain behaviour of reconstituted illitic clay at different temperatures. Eng Geol 47(4):339–350. https://doi.org/10.1016/S0013-7952(96)00113-5

    Article  Google Scholar 

  34. Xiao S, Suleiman MT, Naito C, Al-Khawaja M (2017) Modified–thermal borehole shear test device and testing procedure to investigate the soil-structure interaction of energy piles. Geotech Test J 40(6):1043–1056. https://doi.org/10.1520/GTJ20160257

    Article  Google Scholar 

  35. Xiao S, Suleiman MT, Elzeiny R, Naito C, Neti S, Al-Khawaja M (2018) Effect of temperature and radial displacement cycles on soil–concrete interface properties using modified thermal borehole shear test. J Geotech Geoenviron 144(7):04018036. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001892

    Article  Google Scholar 

  36. Yang W, Zhang L, Zhang H, Wang F, Li X (2020) Numerical investigations of the effects of different factors on the displacement of energy pile under the thermo-mechanical loads. Case Stud Therm Eng 21:100711. https://doi.org/10.1016/j.csite.2020.100711

    Article  Google Scholar 

  37. Yao YP, Zhou AN (2013) Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays. Geotechnique 63(15):1328–1345. https://doi.org/10.1680/geot.13.P.035

    Article  Google Scholar 

  38. Yazdani S, Helwany S, Olgun G (2018) Experimental evaluation of shear strength of Kaolin clay under cyclic and noncyclic thermal loading. Geotech Test J 42(6):20180020. https://doi.org/10.1520/GTJ20180020

    Article  Google Scholar 

  39. You S, Cheng X, Guo H, Yao Z (2016) Experimental study on structural response of CFG energy piles. Appl Therm Eng 96:640–651. https://doi.org/10.1016/j.applthermaleng.2015.11.127

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (grant numbers: 51778138 and 51978162).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guozhu Zhang or Suguang Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Li, C., Xiao, S. et al. Investigation of in situ thermomechanical behaviors of soil around an energy pile with flat dilatometer tests. Acta Geotech. 17, 1985–1999 (2022). https://doi.org/10.1007/s11440-021-01349-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01349-9

Keywords

Navigation