Skip to main content
Log in

A Caputo variable-order fractional damage creep model for sandstone considering effect of relaxation time

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Establishing a fractional creep model with few parameters and explicit physical interpretation is of significant meaning for predicting rheological deformation of rock. In this study, based on the Caputo variable-order fractional derivative, a Caputo variable-order fractional creep model is proposed, whose physical interpretation is clearly stated by setting a varying-order function related to relaxation time. The significance of relaxation time is firstly highlighted to reveal the evolution mechanism of viscoelasticity of creep and relaxation response by constructing equivalence between rheological responses of constant-order fractional Maxwell model and that of time-varying viscosity Maxwell model. Meanwhile, considering the importance of relaxation time in rheology, a modified damage factor is also presented and introduced in proposed model. Next, for verifying the applicability of proposed damage creep model, a series of uniaxial creep experiments were conducted on sandstone under step by step loading, the creep data predicted by proposed damage creep model are well agreement with experimental creep data. And then, a comparative study with constant-order fractional damage creep model was performed to present the advantages of proposed Caputo variable-order fractional damage creep model, which gives further references for application of Caputo variable-order fractional derivative in rheological model. Finally, the variations and influence of elastic modulus and relaxation time on creep response based on proposed Caputo variable-order fractional damage creep model are discussed and expounded deeply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bouras Y, Zorica D, Atanacković TM, Vrcelj Z (2018) A non-linear thermo-viscoelastic rheological model based on fractional derivatives for high temperature creep in concrete. Appl Math Model 55(3):551–568

    Article  MathSciNet  Google Scholar 

  2. Chen W, Sun HG, Li XC (2010) Fractional derivative modeling in mechanics and engineering. Science Press, China

    Google Scholar 

  3. Coimbra CF (2003) Mechanic with variable-order differential operators. Ann Phys 12(11–12):692–703

    Article  MathSciNet  Google Scholar 

  4. Fjar E, Holt RM, Raaen AM, Risnes R, Horsrud P (2008) Petroleum related rock mechanics. Elsevier, New York

    Google Scholar 

  5. Gorenflo R, Mainardi F (1997) Fractional calculus: integral and differential equations of fractional order. In: Fractals and fractional calculus in continuum mechanics. Springer, New York, USA, pp 223–276

  6. Heymans N, Bauwens JC (1994) Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheol Acta 33(3):210–219

    Article  Google Scholar 

  7. Ingman D, Suzdalnitsky J (2005) Application of differential operator with servo-order function in model of viscoelastic deformation process. J Eng Mech 131(7):763–767

    Article  Google Scholar 

  8. Ingman D, Suzdalnitsky J, Zeifman M (2000) Constitutive dynamic-order model for nonlinear contact phenomena. J Appl Mech 67(2):383–390

    Article  Google Scholar 

  9. Jiao Z, Chen YQ, Podlubny I (2012) Distributed-order dynamic systems: stability, simulation, Applications and Perspectives. Spinger , London

    Book  Google Scholar 

  10. Kang HP (2014) Support technologies for deep and complex roadways in underground coal mines: a review. Int J Coal Sci Tech 1(3):261–277

    Article  Google Scholar 

  11. Koeller RC (1984) Applications of fractional calculus to the theory of viscoelasticity. J Appl Mech 1(2):299–307

    Article  MathSciNet  Google Scholar 

  12. Liu XL, Li DJ, Han C (2020) Nonlinear damage creep model based on fractional theory for rock materials. Mech Time-depend Mate 10

  13. Liu XL, Li DJ, Han C (2020) A nonlinear damage creep model for sandstone based on fractional theory. Arab J Geosci 13(6):1–8

    Google Scholar 

  14. Lorenzo CF, Hartley TT (2002) Variable order and distributed order fractional operators. Nonlinear Dyn 29(1):57–98

    Article  MathSciNet  Google Scholar 

  15. Ma C, Zhan HB, Yao WM (2019) A new shear rheological model for a soft inter layer with varying water content. Water Sci Eng 11(2):131–138

    Article  Google Scholar 

  16. Mainardi F (2018) A Note on the equivalence of fractional relaxation equations to differential equations with varying coefficients. Mathematics 6:8–12

    Article  Google Scholar 

  17. Mainardi F, Spada G (2011) Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur Phys J sSpec Top 193(1):133–160

    Article  Google Scholar 

  18. Mathur R, Seiler N, Srinivasan A, Pardo N (2010) Opportunities and challenges of deep water subsalt drilling. In: Proceedings of the IADC/SPE drilling conference and exhibition. New Orleans, Louisiana: Society of Petroleum Engineers

  19. Okada T (2005) Mechanical properties of sedimentary soft rock at high temperatures (part 1) – Evaluation of temperature dependency based on triaxial compression test. Civil Engineering Research Laboratory Rep. No. N04026 (in Japanese)

  20. Okuka AS, Zorica D (2019) Fractional Burgers models in creep and stress relaxation tests. Appl Math Model 77:1894–1935

    Article  MathSciNet  Google Scholar 

  21. Peng Y, Zhao J, Li Y (2017) A wellbore creep model based on the fractional viscoelastic constitutive equation. Pet Explor Dev 44(6):1038–1044

    Article  Google Scholar 

  22. Soon CM, Coimbra FM, Kobayashi MH (2005) The variable viscoelasticity oscillator. Ann Phys 14(6):378–389

    Article  Google Scholar 

  23. Sterpi D, Gioda G (2009) Visco-plastic behavior around advancing tunnels in squeezing rock. Rock Mech Rock Eng 42(2):319–339

    Article  Google Scholar 

  24. Sun HG, Chen W, Chen YQ (2009) Variable-order fractional differential operators in anomalous diffusion modeling. Phys A 388(21):4586–4592

    Article  Google Scholar 

  25. Sun HG, Chen W, Sheng H, Chen Y (2010) On mean square displacement behaviors of anomalous diffusions with variable and random orders. Phys Lett A 374(7):906–910

    Article  Google Scholar 

  26. Sun HG, Chen W, Wei H, Chen Y (2011) A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur Phys J Spec Top 193(1):185–192

    Article  Google Scholar 

  27. Tang H, Wang D, Huang R (2018) A new rock creep model based on variable-order fractional derivatives and continuum damage mechanics. Bull Eng Geol Environ 77(375):375–383

    Article  Google Scholar 

  28. Wang HY, Samuel R (2016) 3D geomechanical modeling of salt-creep behavior on wellbore casing for presalt reservoirs. SPE Drill Complet 31(4):261–272

    Article  Google Scholar 

  29. Wu F, Chen J, Zou Q (2018) A nonlinear creep damage model for salt rock. Int J Damage Mech 28(5):758–771

    Article  Google Scholar 

  30. Wu F, Gao R, Liu J (2020) New fractional variable-order creep model with short memory. Appl Math Comput 380:125278

    MathSciNet  MATH  Google Scholar 

  31. Wu F, Liu JF, Wang J (2015) An improved Maxwell creep model for rock based on variable-order fractional derivatives. Environ Earth Sci 73(11):6965–6971

    Article  Google Scholar 

  32. Xia CC, Wang XD, Xu CB (2008) Method to identify rheological models by unified rheological model theory and case study. J Rock Mech Eng 27(8):1594–1600 (in Chinese)

    Google Scholar 

  33. Xia CC, Xu CB, Wang XD (2009) Method for parameters determination with unified rheological mechanical model. J Rock Mech Eng 28(2):425–432

    Google Scholar 

  34. Xu WY, Yang SQ, Chu WJ (2007) Nonlinear viscoelastic-plastic rheological model (Hohai model) of rock and its engineering application. J Rock Mech Eng 25(3):641–646 ((In Chinese))

    Google Scholar 

  35. Zhang S, Zhang F (2009) A thermo-elasto-viscoplastic model for soft sedimentary rock. Soils found 49(4):583–595

    Article  Google Scholar 

  36. Zhou HW, Liu D, Lei G (2018) The creep-damage model of salt rock based on fractional derivative. Energies 11(9):2349–2357

    Article  Google Scholar 

  37. Zhou HW, Wang CP, Han BB (2011) A creep constitutive model for salt rock based on fractional derivatives. Int J Rock Mech Min Sci 48(1):116–121

    Article  Google Scholar 

Download references

Acknowledgements

This introduced work in this paper was supported by the National Key R&D Program of China (2016YFC0600901), National Natural Science Foundation of China (41572334, 11572344), Fundamental Research Funds for the Central Universities (2010YL14). We thank anonymous reviewers for their helpful comments on an earlier draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejian Li.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this study. The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The discretization of Caputo VOF1 derivative is expressed as follows [26]:

$$ \begin{aligned} {}_{{{\text{VOF}}1}}^{C} D_{0}^{\alpha \left( t \right)} f\left( t \right) & = \mathop \int \limits_{0}^{t} \frac{1}{{{\Gamma }\left( {1 - \alpha \left( \tau \right)} \right)}}\frac{{f^{\prime}\left( \tau \right)}}{{\left( {t - \tau } \right)^{\alpha \left( \tau \right)} }}{\text{d}}\tau \\ & \approx \mathop \sum \limits_{i = 0}^{k} \mathop \int \limits_{i\tau }^{{\left( {i + 1} \right)\tau }} \frac{\partial f\left( \mu \right)}{{\partial \mu }}\frac{1}{{{\Gamma }\left( {1 - \alpha \left( {t_{i + 1} } \right)} \right)}}\frac{{{\text{d}}\mu }}{{\left( {t_{k + 1} - \mu } \right)^{{\alpha \left( {t_{i + 1} } \right)}} }} \\ & = \mathop \sum \limits_{i = 0}^{k} \frac{{f\left( {t_{i + 1} } \right) - f\left( {t_{i} } \right)}}{\tau }\mathop \int \limits_{i\tau }^{{\left( {i + 1} \right)\tau }} \frac{1}{{{\Gamma }\left( {1 - \alpha \left( {t_{i + 1} } \right)} \right)}}\frac{{{\text{d}}\mu }}{{\left( {t_{k + 1} - \mu } \right)^{{\alpha \left( {t_{i + 1} } \right)}} }} \\ & = \mathop \sum \limits_{i = 0}^{k} \frac{{f\left( {t_{i + 1} } \right) - f\left( {t_{i} } \right)}}{\tau }\mathop \int \limits_{{\left( {k - i} \right)\tau }}^{{\left( {k - i + 1} \right)\tau }} \frac{1}{{{\Gamma }\left( {1 - \alpha \left( {t_{k - i + 1} } \right)} \right)}}\frac{{{\text{d}}\varphi }}{{\varphi^{{\alpha \left( {t_{k - i + 1} } \right)}} }} \\ & = \mathop \sum \limits_{i = 0}^{k} \frac{{f\left( {t_{k - i + 1} } \right) - f\left( {t_{k - i} } \right)}}{\tau }\mathop \int \limits_{\left( i \right)\tau }^{{\left( {i + 1} \right)\tau }} \frac{1}{{{\Gamma }\left( {1 - \alpha \left( {t_{i + 1} } \right)} \right)}}\frac{{{\text{d}}\varphi }}{{\varphi^{{\alpha \left( {t_{i + 1} } \right)}} }} \\ & = \mathop \sum \limits_{i = 0}^{k} \frac{{f\left( {t_{k - i + 1} } \right) - f\left( {t_{k - i} } \right)}}{\tau }\frac{1}{{{\Gamma }\left( {1 - \alpha \left( {t_{i + 1} } \right)} \right)}}\mathop \int \limits_{\left( i \right)\tau }^{{\left( {i + 1} \right)\tau }} \frac{{{\text{d}}\varphi }}{{\varphi^{{\alpha \left( {t_{i + 1} } \right)}} }} \\ & = \mathop \sum \limits_{i = 0}^{k} \left[ {f\left( {t_{k - i + 1} } \right) - f\left( {t_{k - i} } \right)} \right]\frac{{\tau^{{ - \alpha \left( {t_{i + 1} } \right)}} }}{{{\Gamma }\left( {2 - \alpha \left( {t_{i + 1} } \right)} \right)}}\left[ {\left( {i + 1} \right)^{{1 - \alpha \left( {t_{i + 1} } \right)}} - i^{{1 - \alpha \left( {t_{i + 1} } \right)}} } \right] \\ \end{aligned} $$
(19)

where \(\left( {k + 1} \right)\tau = t\) and \(\tau\) is the time step.

The discretization of Caputo VOF2 derivative is expressed as follows [1]:

$$ \begin{aligned} {}_{{{\text{VOF}}2}}^{C} D_{0}^{\alpha \left( t \right)} f\left( t \right) & = \frac{1}{{{\Gamma }\left( {1 - \alpha \left( t \right)} \right)}}\mathop \int \limits_{0}^{t} \frac{{f^{\prime}\left( \tau \right)}}{{\left( {t - \tau } \right)^{\alpha \left( t \right)} }}{\text{d}}\tau \\ & \approx \frac{1}{{{\Gamma }\left( {1 - \alpha_{n} } \right)}}\mathop \sum \limits_{i = 0}^{n - 1} \mathop \int \limits_{i\Delta t}^{{\left( {i + 1} \right)\Delta t}} \frac{{f^{\prime}\left( \tau \right){\text{d}}\tau }}{{\left( {t - \tau } \right)^{{\alpha_{n} }} }} \\ & = \frac{1}{{{\Gamma }\left( {1 - \alpha_{n} } \right)}}\mathop \sum \limits_{i = 0}^{n - 1} \mathop \int \limits_{i\Delta t}^{{\left( {i + 1} \right)\Delta t}} \frac{{f_{i + 1} - f_{i} }}{\Delta t}\frac{{{\text{d}}\tau }}{{\left( {t - \tau } \right)^{{\alpha_{n} }} }} \\ & = \frac{1}{{{\Gamma }\left( {1 - \alpha_{n} } \right)}}\mathop \sum \limits_{i = 0}^{n - 1} \frac{{f_{i + 1} - f_{i} }}{\Delta t}\mathop \int \limits_{i\Delta t}^{{\left( {i + 1} \right)\Delta t}} \frac{{{\text{d}}\tau }}{{\left( {t - \tau } \right)^{{\alpha_{n} }} }} \\ & = \frac{1}{{{\Gamma }\left( {2 - \alpha_{n} } \right)\left( {\Delta t} \right)^{{\alpha_{n} }} }}\mathop \sum \limits_{i = 0}^{n - 1} \left( {f_{i + 1} - f_{i} } \right)\left[ {\left( {n - i} \right)^{{1 - \alpha_{n} }} - \left( {n - i - 1} \right)^{{1 - \alpha_{n} }} } \right] + \frac{{f_{n} - f_{n - 1} }}{{{\Gamma }\left( {2 - \alpha_{n} } \right)\left( {\Delta t} \right)^{{\alpha_{n} }} }} \\ \end{aligned} $$
(20)

where \(\left( {k + 1} \right)\tau = t\) is the time step and \( t = n\Delta t \)

The R–L fractional integral with the order \(\alpha\) is defined by

$$ D^{ - \alpha } f\left( t \right) = \frac{1}{\Gamma \left( \alpha \right)}\mathop \int \limits_{0}^{t} \left( {t - s} \right)^{\alpha - 1} f\left( s \right){\text{d}}s $$
(21)

And the R–L fractional derivative is expressed as follows:

$$ D^{\alpha } f\left( t \right) = \frac{{{\text{d}}^{n} \left[ {D^{{ - \left( {n - \alpha } \right)}} f\left( t \right)} \right]}}{{{\text{d}}t^{n} }} $$
(22)

where \(D^{ - \alpha }\) and \(D^{\alpha }\) are R–L fractional integral and derivative. And \(n\) is positive integers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, D., Han, C. et al. A Caputo variable-order fractional damage creep model for sandstone considering effect of relaxation time. Acta Geotech. 17, 153–167 (2022). https://doi.org/10.1007/s11440-021-01230-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01230-9

Keywords

Navigation