Skip to main content
Log in

A constitutive model for municipal solid waste considering mechanical creep and biodegradation-induced compression

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

A constitutive model is developed to describe the stress–strain–time behavior for decomposing municipal solid waste (MSW) within a critical state soil mechanics framework. The model is an extension of the Modified Cam-Clay plasticity model. In this model, three sources contribute to the hardening of MSW due to volumetric strain: time-independent plastic volumetric strain, time-dependent volumetric mechanical creep strain, and time-dependent volumetric strain due to the biodegradation (decomposition) of MSW. The MSW model was evaluated through numerical analyses of large-scale one-dimensional compression tests in the laboratory and the field and the reported vertical and horizontal deformations of a MSW landfill. The associated model parameters were obtained by compositional analysis of the waste, from values reported in the literature, and by fitting numerical results to observed behavior. For the laboratory compression test, the best-fit numerical simulation over-predicted the early settlement but converged on the experimental values after 200 days. Initially, the calculated vertical strains in the field-scale test deviated from the measured strains by up to 10% over the 398-day period of the test. However, numerical results after adjusting model parameters to provide the best fit with the measured strains resulted in a maximum deviation of less than 3% over the test duration. The calculated vertical displacements of the MSW landfill were consistent with field measurements. However, the calculated horizontal displacements were significantly lower than the measured values. Sensitivity studies showed that the time-dependent settlement predicted by the model is highly sensitive to the biodegradation rate of MSW. The good agreement between numerical values and observed vertical deformations for the SWEAP section on the MSW landfill suggests that the model has the potential to assess the performance of subsystems in landfills (e.g., the performance of a side slope liner system subject to landfill settlement). However, the discrepancy between predicted and observed horizontal displacements suggests that the numerical model can be improved by incorporating deviatoric creep deformations in the constitutive model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data and material used in preparation of this manuscript are available from the authors upon request if not already in the public domain.

Code availability

The finite difference code used in the numerical analyses described herein [27] is a commercial code that can be purchased from the developer. The constitutive model used in these analyses was programmed by the first author (Gao) and is the property of the first author.

Abbreviations

\(C_{\alpha }^{\prime }\) :

Modified coefficient of secondary compression

dε v :

Volumetric strain increment

\({\text{d}}\varepsilon_{{\text{v}}}^{{\text{e}}}\) :

Time-independent elastic (recoverable) volumetric strain increment

\({\text{d}}\varepsilon_{{\text{v}}}^{{\text{p}}}\) :

Time-independent plastic (irrecoverable) volumetric strain increment

\({\text{d}}\varepsilon_{{\text{v}}}^{{{\text{tp}}}}\) :

Time-dependent plastic volumetric strain increment

\({\text{d}}\varepsilon_{{\text{c}}}^{{\text{t}}}\) :

Time-dependent plastic volumetric mechanical creep strain increment

\({\text{d}}\varepsilon_{{\text{d}}}^{{\text{t}}}\) :

Time-dependent plastic volumetric biodegradation strain increment

\({\text{d}}\varepsilon_{{\text{s}}}^{{\text{e}}}\) :

Elastic deviatoric strain increment

\({\text{d}}\varepsilon_{{\text{s}}}^{{\text{p}}}\) :

Plastic deviatoric strain increment

dp′:

Mean effective stress increment

\({\text{d}}p_{{\text{c}}}^{{\prime }}\) :

Effective preconsolidation stress increment

\({\text{d}}p_{{\text{c}}}^{{{\prime 1}}}\) :

Increment in effective preconsolidation stress caused by load

\({\text{d}}p_{{\text{c}}}^{{{\prime }2}}\) :

Increment in effective preconsolidation stress due to mechanical creep

\({\text{d}}p_{{\text{c}}}^{{{\prime }3}}\) :

Increment in effective preconsolidation stress due to biodegradation

dq :

Deviatoric stress increment

dt :

Time increment

dV T :

Change in the overall (total) volume

dV S :

Change of volume of the solid phase

dV D :

Change of volume of the decomposable solid phase

dV V :

Change of volume of the voids

\({\text{d}}V_{{{\text{V}}\,{\text{load}}}}\) :

Change of volume of the voids due to load (stress increase)

\({\text{d}}V_{{{\text{V}}\,{\text{creep}}}}\) :

Change of volume of the voids due to mechanical creep

\({\text{d}}V_{{{\text{V}}\,{\text{decomp}}}}\) :

Change of volume of the voids due to biodegradation

e :

Void ratio or natural number

e 0 :

Initial void ratio

E dg :

Total amount of strain that can occur because of biodegradation

f :

Elliptical yield surface

G :

Shear modulus

G s :

Specific gravity

h p :

Height of specimen after primary compression is complete

k :

Kinetic rate constant for biodegradation

K :

Elastic bulk modulus

K max :

Limiting value for the bulk modulus

K 0 :

Ratio of horizontal to vertical effective stress (level ground)

mSi :

Initial dry mass of the solids

m D i :

Initial dry mass of the decomposable solids

m I i :

Initial dry mass of the inert solids

m S :

Dry mass of the solids

m D :

Dry mass of the decomposable solids

m I :

Dry mass of the inert solids

M :

Slope of the critical state line in the p′–q-plane

p′:

Mean effective normal stress, \(\left( {\sigma_{1}^{{\prime }} + \sigma_{2}^{{\prime }} + \sigma_{3}^{{\prime }} } \right)/3\)

\(p_{{\text{c}}}^{{\prime }}\) :

Effective preconsolidation stress

q :

Deviatoric stress, \(\left( {3\surd 2} \right)\tau_{{{\text{oct}}}}\)

t :

Time

t 0 :

Time at which secondary compression begins

t v :

Volumetric age

(t v)i :

Instant volumetric time, usually set to unity

T 1 :

Creep time

V T i :

Initial total (overall) volume

V S :

Total volume of the solids

V D :

Volume of the decomposable solid phase

V I :

Volume of the inert solid phase

w :

Initial water content

x :

Horizontal direction

y :

Vertical direction

γ 0 :

Initial bulk unit weight

γ :

Bulk unit weight

γ d :

Dry unit weight

ε :

Vertical strain, compression positive

\(\varepsilon_{{\text{v}}}^{{\text{p}}}\) :

Time-independent plastic volumetric strain

\(\varepsilon_{{\text{c}}}^{{\text{t}}}\) :

Time-dependent plastic volumetric mechanical creep strain

\(\varepsilon_{{\text{d}}}^{{\text{t}}}\) :

Time-dependent plastic volumetric biodegradation strain

η :

Slope of the one-dimensional normal compression line in the p′–q-plane

κ :

Slope of the elastic swelling line in the lnp′–v-plane

λ :

Slope of the initial normal consolidation line in the lnp′v-plane

Λ:

Decomposition-induced void change parameter

μ :

Poisson’s ratio

v 0 :

Initial specific volume, 1 + e0

v l :

Specific volume at the effective reference pressure on the initial normal compression line

v 1 :

Specific volume of point A

v 2 :

Specific volume of point B

ρ d :

Dry density

ρ D :

Dry density of the decomposable solids

ρ I :

Dry density of the inert solids

\(\sigma_{1}^{{\prime }}\) :

Effective major principal stress

\(\sigma_{2}^{{\prime }}\) :

Effective intermediate principal stress

\(\sigma_{3}^{{\prime }}\) :

Effective minor principal stress

\(\sigma_{{\text{v}}}^{{\prime }}\) :

Effective vertical stress

τ oct :

Octahedral shear stress

φ 1 :

Effective friction angle

ψ :

Secondary compression coefficient, ln-scale

Ω:

Decomposition hardening multiplier

Δhc :

Settlement generated by mechanical creep

References

  1. Bareither CA, Benson CH, Edil TB (2012) Compression behavior of municipal solid waste: immediate compression. J Geotech Geoenviron Eng 138(9):1047–1062

    Article  Google Scholar 

  2. Bareither CA, Benson CH, Edil TB (2012) Effects of waste composition and decomposition on the shear strength of municipal solid waste. J Geotech Geoenviron Eng 138(10):1161–1174

    Article  Google Scholar 

  3. Bareither CA, Benson CH, Edil TB (2013) Compression of municipal solid waste in bioreactor landfills: mechanical creep and biocompression. J Geotech Geoenviron Eng 139(7):1007–1021

    Article  Google Scholar 

  4. Bareither CA, Breitmeyer RJ, Benson CH, Barlaz MA, Edil TB (2012) Deer track bioreactor experiment: field-scale evaluation of municipal solid waste bioreactor performance. J Geotech Geoenviron Eng 138(6):658–670

    Article  Google Scholar 

  5. Bareither CA, Breitmeyer RJ, Meyer LL, Benson CH, Edil TB, Barlaz MA (2010) Physical, chemical, and biological characterization of solid waste samples. In: Proceeding of 2nd global waste management symposium, San Antonio, TX, 2010, pp. 1–9

  6. Bareither CA, Kwak S (2015) Assessment of municipal solid waste settlement models based on field-scale data analysis. Waste Manag 42:101–117

    Article  Google Scholar 

  7. Bente S, Krase V, Kowalsky U, Dinkler D (2017) Model for degradation-induced settlements as part of a coupled landfill model. Int J Numer Anal Meth Geomech 41(12):1390–1410

    Article  Google Scholar 

  8. Bjarngard A, Edgers L (1990) Settlement of municipal solid waste landfills. In: 13th Annual Madison waste conference, September 1990, pp 192–205

  9. Borja RI, Kavazanjian E Jr (1985) A constitutive model for the stress–strain–time behaviour of ‘wet’ clays. Géotechnique 35(3):283–298

    Article  Google Scholar 

  10. Borja RI, Yin Q, Zhao Y (2020) Cam-Clay plasticity. Part IX: On the anisotropy, heterogeneity, and viscoplasticity of shale. Comput Methods Appl Mech Eng 360:112695

    Article  MathSciNet  MATH  Google Scholar 

  11. Britto AM, Gunn MJ (1987) Critical state soil mechanics via finite element. Chichester, Ellis Horwood Ltd

    MATH  Google Scholar 

  12. California Integrated Waste Management Board (1999) Statewide waste characterization study. Rep. No. 340–00–009, Sacramento, CA. https://www2.calrecycle.ca.gov/publications/Details/824

  13. Chen YM, Ke H, Fredlund DG, Zhan LT, Xie Y (2010) Secondary compression of municipal solid wastes and a compression model for predicting settlement of municipal solid waste landfills. J Geotech Geoenviron Eng 136(5):706–717

    Article  Google Scholar 

  14. Chouksey SK, Sivakumar Babu GL (2015) Constitutive model for strength characteristics of municipal solid waste. Int J Geomech 15(2):04014040

    Article  Google Scholar 

  15. Edil TB, Ranguette VJ, Wuellner WW (1990) Settlement of municipal refuse. In: Geotechnics of waste fills-theory and practice, STP 1070. ASTM, West Conshohocken, Pennsylvania, pp 225–239

  16. Feng SJ, Cao BY, Bai ZB, Yin ZY (2016) Constitutive model for municipal solid waste considering the effect of biodegradation. Géotech Lett 6(4):244–249

    Article  Google Scholar 

  17. Feng SJ, Zhou ZF, Chen YM, Zhang LT (2005) Study on shear strength parameters of municipal solid waste. J Zhejiang Univ Eng Sci 39(7):987–991 ((in Chinese))

    Google Scholar 

  18. Gao W, Bian XC, Xu WJ, Chen YM (2018) Storage capacity and slope stability analysis of municipal solid waste landfills. J Perform Constr Facil 32(4):04018036

    Article  Google Scholar 

  19. Gao W, Chen YM, Zhan LT, Bian XC (2015) Engineering properties for high kitchen waste content municipal solid waste. J Rock Mech Geotech Eng 7(6):646–658

    Article  Google Scholar 

  20. Gao W, Xu WJ, Bian XC, Chen YM (2017) A practical approach for calculating the settlement and storage capacity of landfills based on the space and time discretization of the landfilling process. Waste Manag 69:202–214

    Article  Google Scholar 

  21. Geosyntec (1996) Static deformation analyses, Operating Industries, Inc. Landfill Monterey Park, CA, Report No. SWP-5, Geosyntec Consultants, Huntington Beach, CA

  22. Gibson RE, Lo KY (1961) A theory of soils exhibiting secondary compression. Acta Polytech Scand C10:1–15

    Google Scholar 

  23. He PJ (2011) Solid waste disposal and recycling technology. Higher Education Press, Beijing (in Chinese)

    Google Scholar 

  24. Hossain MS, Haque MA (2009) The effects of daily cover soils on shear strength of municipal solid waste in bioreactor landfills. Waste Manag 29(5):1568–1576

    Article  Google Scholar 

  25. Hsieh HS, Kavazanjian E, Borja RI (1990) Double-yield-surface Cam-clay plasticity model. I: theory. J Geotech Eng 116(9):1381–1401

    Article  Google Scholar 

  26. Hubert J, Liu XF, Collin F (2016) Numerical modeling of the long term behavior of municipal solid waste in a bioreactor landfill. Comput Geotech 72:152–170

    Article  Google Scholar 

  27. Itasca FLAC (2016) Fast Lagrangian analysis of continua, Version 8.0 constitutive models, Itasca Consulting Group. Inc.

  28. Jerman J, Mašín D (2020) Hypoplastic and viscohypoplastic models for soft clays with strength anisotropy. Int J Numer Anal Meth Geomech 44(10):1396–1416

    Article  Google Scholar 

  29. Jones DRV, Dixon N (2005) Landfill lining stability and integrity: the role of waste settlement. Geotext Geomembr 23(1):27–53

    Article  Google Scholar 

  30. Kavazanjian E Jr, Matasovic N, Bachus RC (1999) Large-diameter static and cyclic laboratory testing of municipal solid waste. In: Proceedings of Sardinia 99—7th international waste management and landfill symposium, Environmental Sanitary Engineering Centre (CISA), University of Padua, Cagliari, Italy, 4–8 October 1999, vol III, pp 437–444

  31. Kavazanjian E Jr, Matasovic N, Bachus RC (2013) The 11th peck lecture: pre-design geotechnical investigation for the OII Superfund Site Landfill. J Geotech Geoenviron Eng 139(11):1849–1863

    Article  Google Scholar 

  32. Kavazanjian E Jr, Wu X, Arab M, Matasovic N (2018) Development of a numerical model for performance-based design of geosynthetic liner systems. Geotext Geomembr 46(2):166–182

    Article  Google Scholar 

  33. Ke H (2002) Research on settlement, static and dynamic stability of landfills for MSW. Ph.D. Dissertation, Zhejiang University, Hangzhou, China (in Chinese)

  34. Krase V, Bente S, Kowalsky U, Dinkler D (2011) Modelling the stress–deformation behaviour of municipal solid waste. Géotechnique 61(8):665–675

    Article  Google Scholar 

  35. Kumar G, Reddy KR, Foster C (2021) Modeling elasto-visco-bio-plastic mechanical behavior of municipal solid waste in landfills. Acta Geotech 16:1061–1081

    Google Scholar 

  36. Ling HI, Leshchinsky D, Mohri Y, Kawabata T (1998) Estimation of municipal solid waste landfill settlement. J Geotech Geoenviron Eng 124(1):21–28

    Article  Google Scholar 

  37. Machado SL, Carvalho MF, Vilar OM (2002) Constitutive model for municipal solid waste. J Geotech Geoenviron Eng 128(11):940–951

    Article  Google Scholar 

  38. Machado SL, Vilar OM, Carvalho MF (2008) Constitutive model for long term municipal solid waste mechanical behavior. Comput Geotech 35(5):775–790

    Article  Google Scholar 

  39. Machado SL, Vilar OM, Carvalho MF, Karimpour-Fard M (2017) A constitutive framework to model the undrained loading of municipal solid waste. Comput Geotech 85:207–219

    Article  Google Scholar 

  40. Mánica MA, Gens A, Ovando-Shelley E, Botero E, Vaunat J (2021) An effective combined framework for modelling the time-dependent behaviour of soft structured clays. Acta Geotechnica 16:535–550

    Google Scholar 

  41. Marques ACM, Filz GM, Vilar OM (2003) Composite compressibility model for municipal solid waste. J Geotech Geoenviron Eng 129(4):372–378

    Article  Google Scholar 

  42. Matasovic N, Kavazanjian E Jr (1998) Cyclic characterization of OII landfill solid waste. J Geotech Geoenviron Eng 124(3):197–210

    Article  Google Scholar 

  43. McDougall J (2007) A hydro-bio-mechanical model for settlement and other behaviour in landfilled waste. Comput Geotech 34(4):229–246

    Article  Google Scholar 

  44. McDougall JR, Pyrah IC (2004) Phase relations for decomposable soils. Geotechnique 54(7):487–493

    Article  Google Scholar 

  45. Noorany I, Sweet JA, Smith IM (1993) Deformation of fill slopes caused by wetting. In: Stability and performance of slopes and embankments II, Geotechnical Special Publication 31, Vol 2. ASCE, New York, pp 1244–1257

  46. Oweis IS (2006) Estimate of landfill settlements due to mechanical and decompositional processes. J Geotech Geoenviron Eng 132(5):644–650

    Article  Google Scholar 

  47. Park HI, Lee SR (2002) Long-term settlement behaviour of MSW landfills with various fill ages. Waste Manag Res 20(3):259–268

    Article  Google Scholar 

  48. Park HI, Park B, Lee SR, Hwang D (2007) Parameter evaluation and performance comparison of MSW settlement prediction models in various landfill types. J Environ Eng 133(1):64–72

    Article  Google Scholar 

  49. Powrie W, Xu XB, Richards D, Zhan LT, Chen YM (2019) Mechanisms of settlement in municipal solid waste landfills. J Zhejiang Univ Sci A 20(12):927–947

    Article  Google Scholar 

  50. Reddy KR, Hettiarachchi H, Gangathulasi J, Bogner J, Lagier T (2009) Geotechnical properties of synthetic municipal solid waste. Int J Geotech Eng 3(3):429–438

    Article  Google Scholar 

  51. Reddy KR, Kumar G, Giri RK (2017) Influence of dynamic coupled hydro-bio-mechanical processes on response of municipal solid waste and liner system in bioreactor landfills. Waste Manag 63:143–160

    Article  Google Scholar 

  52. Reddy KR, Kumar G, Giri RK (2018) System effects on bioreactor landfill performance based on coupled hydro-bio-mechanical modeling. J Hazard Toxic Radioact Waste 22(1):04017024

    Article  Google Scholar 

  53. Reddy KR, Kumar G, Giri RK (2018) Modeling coupled hydro-bio-mechanical processes in bioreactor landfills: framework and validation. Int J Geomech 18(9):04018102

    Article  Google Scholar 

  54. Reddy KR, Kumar G, Giri RK, Basha BM (2018) Reliability assessment of bioreactor landfills using Monte Carlo simulation and coupled hydro-bio-mechanical model. Waste Manag 72:329–338

    Article  Google Scholar 

  55. Roscoe KH, Burland JB (1968) On the generalized stress–strain behaviour of ‘wet’ clay. In: Heyman J, Leckie FA (eds) Engineering plasticity. Cambridge University Press, Cambridge, pp 535–609

    Google Scholar 

  56. Schofield AN, Wroth CP (1968) Critical state soil mechanics. McGraw-Hill, London

    Google Scholar 

  57. Sivakumar Babu GL, Reddy KR, Chouksey SK (2010) Constitutive model for municipal solid waste incorporating mechanical creep and biodegradation-induced compression. Waste Manag 30(1):11–22

    Article  Google Scholar 

  58. Sivakumar Babu GL, Reddy KR, Chouksey SK (2011) Parametric study of MSW landfill settlement model. Waste Manag 31(6):1222–1231

    Article  Google Scholar 

  59. Sivakumar Babu GL, Reddy KR, Chouksey SK, Kulkarni HS (2010) Prediction of long-term municipal solid waste landfill settlement using constitutive model. Pract Period Hazard Toxic Radioact Waste Manag 14(2):139–150

    Article  Google Scholar 

  60. Sowers GF (1973) Settlement of waste disposal fills. In: Proceedings of the 8th international conference on soil mechanics and foundation engineering, Moscow, pp 207–210

  61. Sun XL (2007) Characterization of deformation and strength for municipal solid waste. Ph.D. Dissertation, Dalian University of Technology, Dalian, China (in Chinese)

  62. Tan TS, Inoue T, Lee SL (1991) Hyperbolic method for consolidation analysis. J Geotech Eng 117(11):1723–1737

    Article  Google Scholar 

  63. Tano BFG, Dias D, Fowmes GJ, Olivier F, Stoltz G, Touze-Foltz N (2016) Numerical modeling of the nonlinear mechanical behavior of multilayer geosynthetic system for piggyback landfill expansions. Geotext Geomembr 44(6):782–798

    Article  Google Scholar 

  64. Taylor DW (1948) Fundamental of soil mechanics. Wiley, New York

    Book  Google Scholar 

  65. Townsend TG, Powell J, Jain P, Xu Q, Tolaymat T, Reinhart D (2015) Sustainable practices for landfill design and operation. Springer, New York

    Book  Google Scholar 

  66. Vermeer PA, Neher HP (1999) A soft soil model that accounts for creep. In: Beyond 2000 in computational geotechnics, Balkema, Rotterdam, pp 249–261

  67. Vilar OM, Carvalho MF (2004) Mechanical properties of municipal solid waste. Geotech Test J 32(6):1–12

    Google Scholar 

  68. Wall DK, Zeiss C (1995) Municipal landfill biodegradation and settlement. J Environ Eng 121(3):214–224

    Article  Google Scholar 

  69. Wu X (2013) Effect of waste settlement and seismic loading on the integrity of geomembrane barrier systems. Ph.D. Dissertation, Arizona State University, US

  70. Yen BC, Scanlon B (1975) Sanitary landfill settlement rates. J Geotech Geoenviron Eng 101(5):475–487

    Google Scholar 

  71. Yin JH, Graham J (1989) Viscous–elastic–plastic modelling of one-dimensional time-dependent behaviour of clays. Can Geotech J 26(2):199–209

    Article  Google Scholar 

  72. Zekkos DP (2005) Evaluation of static and dynamic properties of municipal solid-waste. Ph.D. Dissertation, University of California, Berkeley, USA

  73. Zekkos DP, Athanasopoulos GA, Bray JD, Grizi A, Theodoratos A (2010) Large-scale direct shear testing of municipal solid waste. Waste Manag 30(8–9):1544–1555

    Article  Google Scholar 

  74. Zhou F, Wang L, Liu H (2021) A fractional elasto-viscoplastic model for describing creep behavior of soft soil. Acta Geotech 16:67–76

    Google Scholar 

Download references

Funding

The China Scholarship Council (CSC) is gratefully acknowledged for its financial support.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Wu Gao. The first draft of the manuscript was written by Wu Gao, and both authors commented on previous versions of the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Edward Kavazanjian Jr..

Ethics declarations

Conflict of interest

The authors have no conflicts of interest or competing interests to declare regarding the work described herein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

See Table 8.

Table 8 Constitutive models for mechanical behavior of soft clays and waste

Appendix 2: Derivation of Eq. (10b)

As shown in Fig. 1, for a waste element at a state point at B, with volumetric age tv, volumetrically creeps in time period \(\Delta t = \Delta t_{{\text{v}}}\) at a constant effective stress, the waste would shrink by an amount as follows:

$$\left| {\Delta e} \right| = \psi \ln \left( {1 + \frac{{\Delta t_{{\text{v}}} }}{{t_{{\text{v}}} }}} \right) = \left( {\lambda - \kappa } \right)\ln \left( {1 + \frac{{\Delta p_{{\text{c}}}^{{\prime }} }}{{p_{{\text{c}}}^{{\prime }} }}} \right)$$
(26)

Solving for \(\Delta p_{{\text{c}}}^{{\prime }} /p_{{\text{c}}}^{{\prime }}\) obtains:

$$\frac{{\Delta p_{{\text{c}}}^{{\prime }} }}{{p_{{\text{c}}}^{\sqrt 2 } }} = \left[ {\left( {1 + \frac{{\Delta t_{{\text{v}}} }}{{t_{{\text{v}}} }}} \right)^{{\psi /\left( {\lambda - \kappa } \right)}} - 1} \right] = \frac{\psi }{\lambda - \kappa }\left( {\frac{{\Delta t_{{\text{v}}} }}{{t_{{\text{v}}} }}} \right) + \frac{1}{2!}\frac{\psi }{\lambda - \kappa }\left( {\frac{\psi }{\lambda - \kappa } - 1} \right)\left( {\frac{{\Delta t_{{\text{v}}} }}{{t_{{\text{v}}} }}} \right)^{2} + \cdots$$
(27)

Taking the limit of \(\Delta p_{{\text{c}}}^{{\prime }} /\Delta t_{{\text{v}}}\) as \(\Delta t_{{\text{v}}} \to 0\) gives:

$$\frac{{\partial p_{{\text{c}}}^{{\prime }} }}{{\partial t_{{\text{v}}} }} = \frac{\psi }{\lambda - \kappa }\frac{{p_{{\text{c}}}^{{\prime }} }}{{t_{{\text{v}}} }}$$
(28)

Therefore, the increment in \(p_{{\text{c}}}^{{\prime }}\) due to mechanical creep, \({\text{d}}p_{{\text{c}}}^{{{\prime }2}}\) is expressed as:

$${\text{d}}p_{{\text{c}}}^{{{\prime }2}} = \frac{{\partial p_{{\text{c}}}^{{\prime }} }}{{\partial t_{{\text{v}}} }}|_{{\left( {\varepsilon_{{\text{v}}}^{{\text{p}}} ,V_{{\text{S}}} } \right)}} {\text{d}}t = \frac{{\psi p_{{\text{c}}}^{{\prime }} }}{{\left( {\lambda - \kappa } \right)t_{{\text{v}}} }}{\text{d}}t$$
(29)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Kavazanjian, E. A constitutive model for municipal solid waste considering mechanical creep and biodegradation-induced compression. Acta Geotech. 17, 37–63 (2022). https://doi.org/10.1007/s11440-021-01202-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01202-z

Keywords

Navigation