Skip to main content

Advertisement

Log in

Characterization of volume change and strength behavior of micro-silica and lime-stabilized Cyprus clay

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This study aims to assess the suitability of micro-silica (MS) as an industrial waste to modify the hydro-mechanical behavior of expansive soil in comparison with the use of lime as a traditional stabilizer. Due to limitations associated with soil treatment with calcium-based materials, the effect of lime–micro-silica (LMS) on stabilization of expansive clay was also studied with the aim of reducing the amount of lime consumption. The clay was stabilized with different percentages of lime alone (3% and 5%), MS alone (10% and 20%) and mixtures of LMS (3–10%, 5–10%, 3–20% and 5–20%). Experimental study performed on treated and untreated specimens included the reactivity tests measuring the pozzolanicity of the additives, compaction characteristics and Atterberg limits of mixtures, one-dimensional swell, compressibility, shrinkage, unconfined compressive strength of compacted specimens of different mixtures, as well as X-ray diffraction, scanning electron microscopy and wet chemistry analysis to study the mineralogy, microstructure and chemical composition of specimens. The results showed that the addition of MS alone did not have a significant effect on the stabilization of expansive soil, whereas stabilization with LMS achieved promising results with 10% MS + 3% lime mixture, hence achieving the goals of recycling MS as well as minimizing the amount of lime used. This combination was effective in improving the hydro-mechanical behavior of the clay due to formation of cementitious compounds resulting from pozzolanic reactions between Ca2+ of lime and SiO2 of micro-silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abdi MR, Askarian A, Gonbad MSS (2019) Effects of sodium and calcium sulphates on volume stability and strength of lime-stabilized kaolinite. Bull Eng Geol Environ 79:1–17. https://doi.org/10.1007/s10064-019-01592-1

    Article  Google Scholar 

  2. Abdi MR, Chehregosha A, Farzalizadeh R (2019) Effects of miscellaneous plasticity on behavior of lime-treated kaolinites. Int J Geotech Eng. https://doi.org/10.1080/19386362.2019.1677401

    Article  Google Scholar 

  3. Abo-El-Enein SA, Heikal M, Amin MS, Negm HH (2013) Reactivity of dealuminated kaolin and burnt kaolin using cement kiln dust or hydrated lime as activators. Constr Build Mater 47:1451–1460. https://doi.org/10.1016/j.conbuildmat.2013.06.078

    Article  Google Scholar 

  4. Akbulut S, Saglamer A (2004) Modification of hydraulic conductivity in granular soils using waste materials. Waste Manag 24(5):491–499. https://doi.org/10.1016/j.wasman.2004.01.002

    Article  Google Scholar 

  5. Al-Mukhtar M, Lasledj A, Alcover JF (2010) Behaviour and mineralogy changes in lime-treated expansive soil at 20 °C. Appl Clay Sci 50(2):191–198. https://doi.org/10.1016/j.clay.2010.07.023

    Article  Google Scholar 

  6. Alrubaye AJ, Hasan M, Fattah MY (2017) Stabilization of soft kaolin clay with silica fume and lime. Int J Geotech Eng 11(1):90–96. https://doi.org/10.1080/19386362.2016.1187884

    Article  Google Scholar 

  7. Alrubaye AJ, Hasan M, Fattah MY (2018) Effects of using silica fume and lime in the treatment of kaolin soft clay. Geomech Eng 14(3):247–255. https://doi.org/10.12989/gae.2018.14.3.247

    Article  Google Scholar 

  8. AL-Soudany KY (2018) Improvement of expansive soil by using silica fume. Kufa J Eng 9(1):222–239. https://doi.org/10.30572/2018/kje/090115%20%20%20%20

    Article  Google Scholar 

  9. Amin MS, Hashem FS (2011) Hydration characteristics of hydrothermal treated cement kiln dust–sludge–silica fume pastes. Constr Build Mater 25(4):1870–1876. https://doi.org/10.1016/j.conbuildmat.2010.11.073

    Article  Google Scholar 

  10. Asl FN, Asgari HR, Emami H, Jafari M (2019) Combined effect of micro silica with clay, and gypsum as mulches on shear strength and wind erosion rate of sands. Int Soil Water Conserv Res 7(4):388–394. https://doi.org/10.1016/j.iswcr.2019.03.003

    Article  Google Scholar 

  11. ASTM C1240-15 (2015) Standard specification for silica fume used in cementitious mixtures. ASTM International, West Conshohocken. https://doi.org/10.1520/C1240-15

    Book  Google Scholar 

  12. ASTM C593-06 (2011) Standard specification for fly ash and other pozzolans for use with lime for soil stabilization. ASTM International, West Conshohocken. https://doi.org/10.1520/C0593-06R11

    Book  Google Scholar 

  13. ASTM C618-19 (2019) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM International, West Conshohocken. https://doi.org/10.1520/C0618-19

    Book  Google Scholar 

  14. ASTM D2166/D2166M-16 (2016) Standard test method for unconfined compressive strength of cohesive soil. ASTM International, West Conshohocken. https://doi.org/10.1520/D2166_D2166M-16

    Book  Google Scholar 

  15. ASTM D2435/D2435M-11 (2011) Standard test methods for one-dimensional consolidation properties of soils using incremental loading. ASTM International, West Conshohocken. https://doi.org/10.1520/D2435_D2435M-11

    Book  Google Scholar 

  16. ASTM D2487-17 (2017) Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM International, West Conshohocken. https://doi.org/10.1520/D2487-17

    Book  Google Scholar 

  17. ASTM D4318-17e1 (2017) Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International, West Conshohocken. https://doi.org/10.1520/D4318-17E01

    Book  Google Scholar 

  18. ASTM D4546-14e1 (2014) Standard test methods for one-dimensional swell or collapse of soils. ASTM International, West Conshohocken. https://doi.org/10.1520/D4546-14E01

    Book  Google Scholar 

  19. ASTM D698-12e2 (2012) Standard test methods for laboratory compaction characteristics of soil using standard effort (12,400 ft-lbf/ft3 (600 kNm/m3)). ASTM International, West Conshohocken. https://doi.org/10.1520/D0698-12E02

    Book  Google Scholar 

  20. ASTM D854-14 (2014) Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken. https://doi.org/10.1520/D0854-14

    Book  Google Scholar 

  21. Barbhuiya SA, Gbagbo JK, Russell MI, Basheer PAM (2009) Properties of fly ash concrete modified with hydrated lime and silica fume. Constr Build Mater 23(10):3233–3239. https://doi.org/10.1016/j.conbuildmat.2009.06.001

    Article  Google Scholar 

  22. Bharadwaj S, Trivedi MK (2016) Impact of micro silica fume on engineering properties of expansive soil. Int J Sci Technol Eng 2:435–440

    Google Scholar 

  23. Bell FG (1996) Lime stabilization of clay minerals and soils. Eng Geol 42(4):223–237. https://doi.org/10.1016/0013-7952(96)00028-2

    Article  Google Scholar 

  24. Borsadiya AK (2018) Improvement of compressive strength of clayey soil with microsilica (Doctoral dissertation, Texas A&M University-Kingsville)

  25. Bozbey I, Garaisayev S (2010) Effects of soil pulverization quality on lime stabilization of an expansive clay. Environ Earth Sci 60(6):1137–1151. https://doi.org/10.1007/s12665-009-0256-5

    Article  Google Scholar 

  26. Buttress AJ, Grenfell JA, Airey GD (2015) Accelerated swell testing of artificial sulfate bearing lime stabilised cohesive soils. Mater Struct 48(11):3635–3655. https://doi.org/10.1617/s11527-014-0428-y

    Article  Google Scholar 

  27. Chen R, Ding X, Ramey D, Lee I, Zhang L (2016) Experimental and numerical investigation into surface strength of mine tailings after biopolymer stabilization. Acta Geotech 11(5):1075–1085. https://doi.org/10.1007/s11440-015-0420-x

    Article  Google Scholar 

  28. Cristelo N, Glendinning S, Fernandes L, Pinto AT (2013) Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation. Acta Geotech 8(4):395–405. https://doi.org/10.1007/s11440-012-0200-9

    Article  Google Scholar 

  29. Dash SK, Hussain M (2015) Influence of lime on shrinkage behavior of soils. J Mater Civ Eng 27(12):04015041. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001301

    Article  Google Scholar 

  30. Dotto JMR, De Abreu AG, Dal Molin DCC, Müller IL (2004) Influence of silica fume addition on concretes physical properties and on corrosion behaviour of reinforcement bars. Cem Concr Compos 26(1):31–39. https://doi.org/10.1016/S0958-9465(02)00120-8

    Article  Google Scholar 

  31. Eberemu AO (2013) Evaluation of bagasse ash treated lateritic soil as a potential barrier material in waste containment application. Acta Geotech 8(4):407–421. https://doi.org/10.1007/s11440-012-0204-5

    Article  Google Scholar 

  32. Fasihnikoutalab MH, Pourakbar S, Ball RJ, Unluer C, Cristelo N (2019) Sustainable soil stabilisation with ground granulated blast-furnace slag activated by olivine and sodium hydroxide. Acta Geotech 15:1–11. https://doi.org/10.1007/s11440-019-00884-w

    Article  Google Scholar 

  33. Fattah MY, Al-Saidi AA, Jaber MM (2015) Improvement of bearing capacity of footing on soft clay grouted with lime–silica fume mix. Geomech Eng 8(1):113–132. https://doi.org/10.12989/gae.2015.8.1.000

    Article  Google Scholar 

  34. Firoozi AA, Olgun CG, Firoozi AA, Baghini MS (2017) Fundamentals of soil stabilization. Int J Geo-Eng 8(1):26. https://doi.org/10.1186/s40703-017-0064-9

    Article  Google Scholar 

  35. Fredlund MD, Wilson GW, Fredlund DG (2002) Representation and estimation of the shrinkage curve. In: Proceedings of 3rd international conference on unsaturated soils, UNSAT 2002, pp 145–149. Retrieved July 19, 2019, from http://hdl.handle.net/1783.1/13621

  36. Gadouri H, Harichane K, Ghrici M (2017) Effect of calcium sulphate on the geotechnical properties of stabilized clayey soils. Period Polytech Civ Eng 61(2):256–271. https://doi.org/10.3311/PPci.9359

    Article  Google Scholar 

  37. Ghorbani A, Hasanzadehshooiili H, Karimi M, Daghigh Y, Medzvieckas J (2015) Stabilization of problematic silty sands using microsilica and lime. Baltic J Road Bridge Eng 10(1):61–70. https://doi.org/10.3846/bjrbe.2015.08

    Article  Google Scholar 

  38. Giridharan A, Bharathan R, Saranya P (2017) Soil stabilization using silica fume and cement. SSRG Int J Civ Eng 17(1):78–82

    Google Scholar 

  39. Golhashem MR, Uygar E (2019) Improvement of internal stability of alluvial clay from Famagusta Bay, Cyprus, using copolymer of butyl acrylate and styrene. Environ Eng Geosci 25:1–12. https://doi.org/10.2113/EEG-2205

    Article  Google Scholar 

  40. Golhashem MR, Uygar E (2020) Volume change and compressive strength of an alluvial soil stabilized with butyl acrylate and styrene. Constr Build Mater 255:119352. https://doi.org/10.1016/j.conbuildmat.2020.119352

    Article  Google Scholar 

  41. Goodarzi AR, Goodarzi SH, Akbari HR (2015) Assessing geo-mechanical and micro-structural performance of modified expansive clayey soil by silica fume as industrial waste. Iran J Sci Technol Trans Civ Eng 39(C2):333–350. https://doi.org/10.22099/ijstc.2015.3138

    Article  Google Scholar 

  42. James J, Pandian PK (2016) Industrial wastes as auxiliary additives to cement/lime stabilization of soils. Adv Civ Eng. https://doi.org/10.1155/2016/1267391

    Article  Google Scholar 

  43. Kalkan E (2009) Influence of silica fume on the desiccation cracks of compacted clayey soils. Appl Clay Sci 43(3–4):296–302. https://doi.org/10.1016/j.clay.2008.09.002

    Article  Google Scholar 

  44. Kalkan E (2011) Impact of wetting–drying cycles on swelling behavior of clayey soils modified by silica fume. Appl Clay Sci 52(4):345–352. https://doi.org/10.1016/j.clay.2011.03.014

    Article  Google Scholar 

  45. Kalkan E, Akbulut S (2004) The positive effects of silica fume on the permeability, swelling pressure and compressive strength of natural clay liners. Eng Geol 73(1–2):145–156. https://doi.org/10.1016/j.enggeo.2004.01.001

    Article  Google Scholar 

  46. Koteng DO, Chen CT (2015) Strength development of lime–pozzolana pastes with silica fume and fly ash. Constr Build Mater 84:294–300. https://doi.org/10.1016/j.conbuildmat.2015.03.052

    Article  Google Scholar 

  47. Latifi N, Marto A, Eisazadeh A (2016) Physicochemical behavior of tropical laterite soil stabilized with non-traditional additive. Acta Geotech 11(2):433–443. https://doi.org/10.1007/s11440-015-0370-3

    Article  Google Scholar 

  48. Little DN, Nair S (2009) Recommended practice for stabilization for sulfate rich subgrade soils. National Highway Cooperative Research Program, Transportation Research Board of the National Academies, Washington, DC. https://doi.org/10.17226/22997

    Book  Google Scholar 

  49. Luxán MD, Madruga F, Saavedra J (1989) Rapid evaluation of pozzolanic activity of natural products by conductivity measurement. Cem Concr Res 19(1):63–68. https://doi.org/10.1016/0008-8846(89)90066-5

    Article  Google Scholar 

  50. Malekzadeh M, Bilsel H (2014) Use of posidonia oceanica ash in stabilization of expansive soils. Mar Georesour Geotechnol 32(2):179–186. https://doi.org/10.1080/1064119X.2012.728685

    Article  Google Scholar 

  51. Maubec N, Deneele D, Ouvrard G (2017) Influence of the clay type on the strength evolution of lime treated material. Appl Clay Sci 137:107–114. https://doi.org/10.1016/j.clay.2016.11.033

    Article  Google Scholar 

  52. Mitchell JK, Soga K (2005) Fundamentals of soil behavior, vol 3. Wiley, New York

    Google Scholar 

  53. Moayyeri N, Oulapour M, Haghighi A (2019) Study of geotechnical properties of a gypsiferous soil treated with lime and silica fume. Geomech Eng 17(2):195–206. https://doi.org/10.12989/gae.2019.17.2.195

    Article  Google Scholar 

  54. Nalbantoğlu Z (2004) Effectiveness of class C fly ash as an expansive soil stabilizer. Constr Build Mater 18(6):377–381. https://doi.org/10.1016/j.conbuildmat.2004.03.011

    Article  Google Scholar 

  55. Ok YS, Lim JE, Moon DH (2011) Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells. Environ Geochem Health 33(1):83–91. https://doi.org/10.1007/s10653-010-9329-3

    Article  Google Scholar 

  56. Öncü Ş, Bilsel H (2018) Utilization of waste marble to enhance volume change and strength characteristics of sand-stabilized expansive soil. Environ Earth Sci 77(12):461. https://doi.org/10.1007/s12665-018-7638-5

    Article  Google Scholar 

  57. Park CG, Yun SW, Baveye P, Yu C (2015) Effect of industrial by-products on unconfined compressive strength of solidified organic marine clayey soils. Materials 8(8):5098–5111. https://doi.org/10.3390/ma8085098

    Article  Google Scholar 

  58. Pandey A, Rabbani A (2017) Soil stabilization using cement. Int J Civ Eng Technol 8(6):316–322

    Google Scholar 

  59. Pham PV (2012) Utilization of rice husk ash in geotechnology: applicability and effect of the burning conditions. Retrived June 10, 2019, from http://resolver.tudelft.nl/uuid:1400389f-c643-4d44-af41-580c7209e7bb

  60. Quiroga AJ, Thompson ZM, Muraleetharan KK, Miller GA, Cerato AB (2017) Stress–strain behavior of cement-improved clays: testing and modeling. Acta Geotech 12(5):1003–1020. https://doi.org/10.1007/s11440-017-0529-1

    Article  Google Scholar 

  61. Sami A, Rashid I, Bilal M (2018) Improvement in behaviour of expansive soil by adding lime and silica fume. Ned Univ J Res 15(3):101–110

    Google Scholar 

  62. Sargent P (2015) The development of alkali-activated mixtures for soil stabilisation. In: Handbook of alkali-activated cements, mortars and concretes. Woodhead Publishing, Sawston, pp 555–604. https://doi.org/10.1533/9781782422884.4.555

  63. Saussaye L, Boutouil M, Baraud F, Leleyter L, Abdo J (2013) Influence of chloride and sulfate ions on the geotechnical properties of soils treated with hydraulic binders. Road Mater Pavement Des 14(3):551–569. https://doi.org/10.1080/14680629.2013.779303

    Article  Google Scholar 

  64. Schanz T, Elsawy MB (2015) Swelling characteristics and shear strength of highly expansive clay–lime mixtures: a comparative study. Arab J Geosci 8(10):7919–7927. https://doi.org/10.1007/s12517-014-1703-5

    Article  Google Scholar 

  65. Seco A, Ramirez F, Miqueleiz L, Urmeneta P, García B, Prieto E, Oroz V (2012) Types of waste for the production of pozzolanic materials—a review. In: Industrial waste. IntechOpen. https://doi.org/10.5772/36285

  66. Snethen DR (1984) Evaluation of expedient methods for identification and classification of potentially expansive soils. In: Fifth international conference on expansive soils 1984: preprints of papers. Institution of Engineers, Barton, p 22. Retrieved June 15, 2019, from https://search.informit.com.au/documentSummary;dn=826036288566026;res=IELENG

  67. Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering practice. Wiley, New York. https://doi.org/10.1086/625679

    Book  Google Scholar 

  68. Thakare SW, Chauhan P (2016) Stabilization of expansive soil with micro silica, lime and fly ash for pavement. Int J Eng Res 5(1):9–13. https://doi.org/10.17950/ijer/v5i1/003

    Article  Google Scholar 

  69. Tiwari N, Satyam N (2020) An experimental study on the behavior of lime and silica fume treated coir geotextile reinforced expansive soil subgrade. Eng Sci Technol Int J. https://doi.org/10.1016/j.jestch.2019.12.006

    Article  Google Scholar 

  70. Türköz M, Savaş H, Tasci G (2018) The effect of silica fume and lime on geotechnical properties of a clay soil showing both swelling and dispersive features. Arab J Geosci 11(23):735. https://doi.org/10.1007/s12517-018-4045-x

    Article  Google Scholar 

  71. Vitale E, Deneele D, Paris M, Russo G (2017) Multi-scale analysis and time evolution of pozzolanic activity of lime treated clays. Appl Clay Sci 141:36–45. https://doi.org/10.1016/j.clay.2017.02.013

    Article  Google Scholar 

  72. Wu Z, Deng Y, Liu S, Liu Q, Chen Y, Zha F (2016) Strength and micro-structure evolution of compacted soils modified by admixtures of cement and metakaolin. Appl Clay Sci 127:44–51. https://doi.org/10.1016/j.clay.2016.03.040

    Article  Google Scholar 

  73. Yarbaşi N, Kalkan E, Akbulut S (2007) Modification of the geotechnical properties, as influenced by freeze–thaw, of granular soils with waste additives. Cold Reg Sci Technol 48(1):44–54. https://doi.org/10.1016/j.coldregions.2006.09.009

    Article  Google Scholar 

  74. Yuan S, Liu X, Sloan SW, Buzzi OP (2016) Multi-scale characterization of swelling behaviour of compacted Maryland clay. Acta Geotech 11(4):789–804. https://doi.org/10.1007/s11440-016-0457-5

    Article  Google Scholar 

  75. Zhang X, Mavroulidou M, Gunn MJ (2017) A study of the water retention curve of lime-treated London Clay. Acta Geotech 12(1):23–45. https://doi.org/10.1007/s11440-015-0432-6

    Article  Google Scholar 

  76. Zhao NF, Ye WM, Chen B, Chen YG, Cui YJ (2019) Modeling of the swelling–shrinkage behavior of expansive clays during wetting–drying cycles. Acta Geotech 14(5):1325–1335. https://doi.org/10.1007/s11440-018-0718-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra GhavamShirazi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GhavamShirazi, S., Bilsel, H. Characterization of volume change and strength behavior of micro-silica and lime-stabilized Cyprus clay. Acta Geotech. 16, 827–840 (2021). https://doi.org/10.1007/s11440-020-01060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-020-01060-1

Keywords

Navigation