Skip to main content
Log in

Identifying parameters of advanced soil models using an enhanced transitional Markov chain Monte Carlo method

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Parameter identification using Bayesian approach with Markov Chain Monte Carlo (MCMC) has been verified only for certain conventional simple constitutive models up to now. This paper presents an enhanced version of the differential evolution transitional MCMC (DE-TMCMC) method and a competitive Bayesian parameter identification approach for applying to advanced soil models. To realize the intended computational savings, a parallel computing implementation of DE-TMCMC is achieved using the single program/multiple data technique in MATLAB. To verify its robustness and effectiveness, synthetic numerical tests with/without noise and real laboratory tests are used for identifying the parameters of a critical state-based sand model based on multiple independent calculations. The original TMCMC is also used for comparison to highlight that DE-TMCMC is highly robust and effective in identifying the parameters of advanced sand models. Finally, the proposed parameter identification using DE-TMCMC is applied to identify parameters of an elasto-viscoplastic model from two in situ pressuremeter tests. All results demonstrate the excellent ability of the enhanced Bayesian parameter identification approach on identifying parameters of advanced soil models from both laboratory and in situ tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Akeju OV, Senetakis K, Wang Y (2019) Bayesian parameter identification and model selection for normalized modulus reduction curves of soils. J Earthquake Eng 23(2):305–333

    Google Scholar 

  2. Ancey C (2005) Monte Carlo calibration of avalanches described as Coulomb fluid flows. Philos Trans R Soc A Math Phys Eng Sci 363(1832):1529–1550

    MathSciNet  MATH  Google Scholar 

  3. Angelikopoulos P, Papadimitriou C, Koumoutsakos P (2012) Bayesian uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework. J Chem Phys 137(14):144103

    Google Scholar 

  4. Angelikopoulos P, Papadimitriou C, Koumoutsakos P (2015) X-TMCMC: adaptive kriging for Bayesian inverse modeling. Comput Methods Appl Mech Eng 289:409–428

    MathSciNet  MATH  Google Scholar 

  5. Beck JL (2010) Bayesian system identification based on probability logic. Struct Control Health Monit 17(7):825–847

    Google Scholar 

  6. Beck JL, Katafygiotis LS (1998) Updating models and their uncertainties. I: Bayesian statistical framework. J Eng Mech 124(4):455–461

    Google Scholar 

  7. Betz W, Papaioannou I, Straub D (2016) Transitional markov chain monte carlo: observations and improvements. J Eng Mech 142(5):04016016

    Google Scholar 

  8. Cao Z, Wang Y (2014) Bayesian model comparison and selection of spatial correlation functions for soil parameters. Struct Saf 49:10–17

    Google Scholar 

  9. Chang CS, Hicher PY (2005) An elasto-plastic model for granular materials with microstructural consideration. Int J Solids Struct 42(14):4258–4277. https://doi.org/10.1016/j.ijsolstr.2004.09.021

    Article  MATH  Google Scholar 

  10. Ching J, Chen Y-C (2007) Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging. J Eng Mech 133(7):816–832

    Google Scholar 

  11. Ching J, Wang J-S (2016) Application of the transitional Markov chain Monte Carlo algorithm to probabilistic site characterization. Eng Geol 203:151–167

    Google Scholar 

  12. Chopin N (2002) A sequential particle filter method for static models. Biometrika 89(3):539–552

    MathSciNet  MATH  Google Scholar 

  13. Cividini A, Maier G, Nappi A Parameter estimation of a static geotechnical model using a Bayes’ approach. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983. Elsevier, pp 215–226

  14. Eckert N, Parent E, Richard D (2007) Revisiting statistical–topographical methods for avalanche predetermination: Bayesian modelling for runout distance predictive distribution. Cold Reg Sci Technol 49(1):88–107

    Google Scholar 

  15. Fischer J-T, Kofler A, Fellin W, Granig M, Kleemayr K (2015) Multivariate parameter optimization for computational snow avalanche simulation. J Glaciol 61(229):875–888

    Google Scholar 

  16. Gajo A, Wood M (1999) Severn-Trent sand: a kinematic-hardening constitutive model: the q–p formulation. Geotechnique 49(5):595–614

    Google Scholar 

  17. Gauer P, Medina-Cetina Z, Lied K, Kristensen K (2009) Optimization and probabilistic calibration of avalanche block models. Cold Reg Sci Technol 59(2–3):251–258

    Google Scholar 

  18. Hadjidoukas PE, Angelikopoulos P, Papadimitriou C, Koumoutsakos P (2015) Π4U: a high performance computing framework for Bayesian uncertainty quantification of complex models. J Comput Phys 284:1–21

    MathSciNet  MATH  Google Scholar 

  19. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97–109

    MathSciNet  MATH  Google Scholar 

  20. He J, Jones JW, Graham WD, Dukes MD (2010) Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method. Agric Syst 103(5):256–264

    Google Scholar 

  21. Hellweger V, Fischer J-T, Kofler A, Huber A, Fellin W, Oberguggenberger M (2016) Stochastic methods in operational avalanche simulation—from back calculation to prediction. In: Paper presented at the international snow science workshop 2016 proceedings, Colorado, USA

  22. Honjo Y, Wen-Tsung L, Guha S (1994) Inverse analysis of an embankment on soft clay by extended Bayesian method. Int J Numer Anal Methods Geomech 18(10):709–734

    MATH  Google Scholar 

  23. Hsiao EC, Schuster M, Juang CH, Kung GT (2008) Reliability analysis and updating of excavation-induced ground settlement for building serviceability assessment. J Geotech Geoenviron Eng 134(10):1448–1458

    Google Scholar 

  24. Jefferies M (1993) Nor-Sand: a simle critical state model for sand. Geotechnique 43(1):91–103

    Google Scholar 

  25. Jin Y-F, Yin Z-Y, Shen S-L, Hicher P-Y (2016) Selection of sand models and identification of parameters using an enhanced genetic algorithm. Int J Numer Anal Methods Geomech 40(8):1219–1240. https://doi.org/10.1002/nag.2487

    Article  Google Scholar 

  26. Jin Y-F, Yin Z-Y, Shen S-L, Hicher P-Y (2016) Investigation into MOGA for identifying parameters of a critical-state-based sand model and parameters correlation by factor analysis. Acta Geotech 11(5):1131–1145. https://doi.org/10.1007/s11440-015-0425-5

    Article  Google Scholar 

  27. Jin Y-F, Wu Z-X, Yin Z-Y, Shen JS (2017) Estimation of critical state-related formula in advanced constitutive modeling of granular material. Acta Geotech 12(6):1329–1351. https://doi.org/10.1007/s11440-017-0586-5

    Article  Google Scholar 

  28. Jin Y-F, Yin Z-Y, Shen S-L, Zhang D-M (2017) A new hybrid real-coded genetic algorithm and its application to parameters identification of soils. Inverse Probl Sci Eng 25(9):1343–1366. https://doi.org/10.1080/17415977.2016.1259315

    Article  MathSciNet  MATH  Google Scholar 

  29. Jin Y-F, Yin Z-Y, Wu Z-X, Daouadji A (2018) Numerical modeling of pile penetration in silica sands considering the effect of grain breakage. Finite Elem Anal Des 144:15–29. https://doi.org/10.1016/j.finel.2018.02.003

    Article  Google Scholar 

  30. Jin Y-F, Yin Z-Y, Wu Z-X, Zhou W-H (2018) Identifying parameters of easily crushable sand and application to offshore pile driving. Ocean Eng 154:416–429. https://doi.org/10.1016/j.oceaneng.2018.01.023

    Article  Google Scholar 

  31. Jin Y-F, Yin Z-Y, Zhou W-H, Huang H-W (2019) Multi-objective optimization-based updating of predictions during excavation. Eng Appl Artif Intell 78:102–123. https://doi.org/10.1016/j.engappai.2018.11.002

    Article  Google Scholar 

  32. Juang C, Hsein Luo Z, Atamturktur S, Huang H (2012) Bayesian updating of soil parameters for braced excavations using field observations. J Geotech Geoenviron Eng 139(3):395–406

    Google Scholar 

  33. Knabe T, Datcheva M, Lahmer T, Cotecchia F, Schanz T (2013) Identification of constitutive parameters of soil using an optimization strategy and statistical analysis. Comput Geotech 49:143–157. https://doi.org/10.1016/j.compgeo.2012.10.002

    Article  Google Scholar 

  34. Kolymbas D (1985) A generalized hypoelastic constitutive law. In: Paper presented at the proceedings of XI international conference on soil mechanics and foundation engineering, San Francisco

  35. Kolymbas D (1991) An outline of hypoplasticity. Arch Appl Mech 61(3):143–151

    MATH  Google Scholar 

  36. Lee Goh A, Fahey M Application of a 1-dimensional cavity expansion model to pressuremeter and piezocone tests in clay. In: Proceeding of the seventh international conference on computer methods and advances in geomechanics, Cairns, 1991. pp 255–260

  37. Lee S-H, Song J (2017) System identification of spatial distribution of structural parameters using modified transitional Markov chain Monte Carlo method. J Eng Mech 143(9):04017099

    Google Scholar 

  38. Levasseur S, Malécot Y, Boulon M, Flavigny E (2008) Soil parameter identification using a genetic algorithm. Int J Numer Anal Methods Geomech 32(2):189–213. https://doi.org/10.1002/nag.614

    Article  MATH  Google Scholar 

  39. Low HE (2009) Performance of penetrometers in deepwater soft soil characterisation. University of Western Australia

  40. Mašín D (2005) A hypoplastic constitutive model for clays. Int J Numer Anal Methods Geomech 29(4):311–336

    MATH  Google Scholar 

  41. Mašín D (2015) The influence of experimental and sampling uncertainties on the probability of unsatisfactory performance in geotechnical applications. Géotechnique 65(11):897–910

    Google Scholar 

  42. Miro S, König M, Hartmann D, Schanz T (2015) A probabilistic analysis of subsoil parameters uncertainty impacts on tunnel-induced ground movements with a back-analysis study. Comput Geotech 68:38–53

    Google Scholar 

  43. Most T (2010) Identification of the parameters of complex constitutive models: least squares minimization vs. Bayesian updating. Reliab Optim Struct Syst 119

  44. Murakami A, Shinmura H, Ohno S, Fujisawa K (2018) Model identification and parameter estimation of elastoplastic constitutive model by data assimilation using the particle filter. Int J Numer Anal Methods Geomech 42(1):110–131

    Google Scholar 

  45. Ortiz GA, Alvarez DA, Bedoya-Ruíz D (2015) Identification of Bouc-Wen type models using the transitional Markov chain Monte Carlo method. Comput Struct 146:252–269

    Google Scholar 

  46. Papon A, Riou Y, Dano C, Hicher PY (2012) Single-and multi-objective genetic algorithm optimization for identifying soil parameters. Int J Numer Anal Methods Geomech 36(5):597–618. https://doi.org/10.1002/nag.1019

    Article  Google Scholar 

  47. Qi X-H, Zhou W-H (2017) An efficient probabilistic back-analysis method for braced excavations using wall deflection data at multiple points. Comput Geotech 85:186–198

    Google Scholar 

  48. Ren D-J, Shen S-L, Arulrajah A, Wu H-N (2018) Evaluation of ground loss ratio with moving trajectories induced in DOT tunnelling. Can Geotech J 55(6):894–902

    Google Scholar 

  49. Ritto T, Nunes L (2015) Bayesian model selection of hyperelastic models for simple and pure shear at large deformations. Comput Struct 156:101–109

    Google Scholar 

  50. Roscoe KH, Burland J (1968) On the generalized stress-strain behaviour of wet clay, engineering plasticity. Cambridge University Press, Cambridge, UK, pp 535–609

    MATH  Google Scholar 

  51. Shen SL, Xu YS (2011) Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can Geotech J 48(9):1378–1392

    Google Scholar 

  52. Shen S-L, Wu Y-X, Misra A (2017) Calculation of head difference at two sides of a cut-off barrier during excavation dewatering. Comput Geotech 91:192–202

    Google Scholar 

  53. Sheng D, Sloan S, Yu H (2000) Aspects of finite element implementation of critical state models. Comput Mech 26(2):185–196

    MATH  Google Scholar 

  54. Taiebat M, Dafalias YF (2008) SANISAND: simple anisotropic sand plasticity model. Int J Numer Anal Methods Geomech 32(8):915–948

    MATH  Google Scholar 

  55. Tan F, Zhou W-H, Yuen K-V (2016) Modeling the soil water retention properties of same-textured soils with different initial void ratios. J Hydrol 542:731–743

    Google Scholar 

  56. Tan F, Zhou WH, Yuen KV (2018) Effect of loading duration on uncertainty in creep analysis of clay. Int J Numer Anal Methods Geomech 42(11):1235–1254

    Google Scholar 

  57. Verdugo R, Ishihara K (1996) The steady state of sandy soils. Soils Found 36(2):81–91

    Google Scholar 

  58. Vermeer P (1978) A double hardening model for sand. Geotechnique 28(4):413–433

    Google Scholar 

  59. Von Wolffersdorff PA (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mech Cohesive-frictional Mater Int J Exp Model Comput Mater Struct 1(3):251–271

    Google Scholar 

  60. Vrugt JA (2016) Markov chain Monte Carlo simulation using the DREAM software package: theory, concepts, and MATLAB implementation. Environ Model Softw 75:273–316

    Google Scholar 

  61. Wang S, Wu W, Yin Z-Y, Peng C, He X-Z (2018) Modelling time-dependent behaviour of granular material with hypoplasticity. Int J Numer Anal Methods Geomech 42(12):1331–1345. https://doi.org/10.1002/nag.2793

    Article  Google Scholar 

  62. Wu W, Bauer E, Kolymbas D (1996) Hypoplastic constitutive model with critical state for granular materials. Mech Mater 23(1):45–69

    Google Scholar 

  63. Wu H-N, Shen S-L, Yang J (2017) Identification of tunnel settlement caused by land subsidence in soft deposit of Shanghai. J Perform Constr Facil 31(6):04017092

    Google Scholar 

  64. Wu Z-X, Yin Z-Y, Jin Y-F, Geng X-Y (2017) A straightforward procedure of parameters determination for sand: a bridge from critical state based constitutive modelling to finite element analysis. Eur J Environ Civil Eng 1–23. https://doi.org/10.1080/19648189.2017.1353442

    Google Scholar 

  65. Wu Z-X, Yin Z-Y, Jin Y-F, Geng X-Y (2017) A straightforward procedure of parameters determination for sand: a bridge from critical state based constitutive modelling to finite element analysis. Eur J Environ Civil Eng. https://doi.org/10.1080/19648189.2017.1353442

    Article  Google Scholar 

  66. Xiong H, Nicot F, Yin Z (2017) A three-dimensional micromechanically based model. Int J Numer Anal Methods Geomech 41(17):1669–1686

    Google Scholar 

  67. Xu Y-S, Ma L, Shen S-L, Sun W-J (2012) Evaluation of land subsidence by considering underground structures that penetrate the aquifers of Shanghai, China. Hydrol J 20(8):1623–1634

    Google Scholar 

  68. Yao Y-P, Wang N-D (2013) Transformed stress method for generalizing soil constitutive models. J Eng Mech 140(3):614–629

    Google Scholar 

  69. Yao Y, Sun D, Luo T (2004) A critical state model for sands dependent on stress and density. Int J Numer Anal Methods Geomech 28(4):323–337

    MATH  Google Scholar 

  70. Yao Y, Lu D, Zhou A, Zou B (2004) Generalized non-linear strength theory and transformed stress space. Sci China Ser E Technol Sci 47(6):691–709

    MATH  Google Scholar 

  71. Yao Y, Sun D, Matsuoka H (2008) A unified constitutive model for both clay and sand with hardening parameter independent on stress path. Comput Geotech 35(2):210–222

    Google Scholar 

  72. Yao Y, Hou W, Zhou A (2009) UH model: three-dimensional unified hardening model for overconsolidated clays. Geotechnique 59(5):451–469

    Google Scholar 

  73. Yao Y-P, Kong L-M, Zhou A-N, Yin J-H (2014) Time-dependent unified hardening model: three-dimensional elastoviscoplastic constitutive model for clays. J Eng Mech 141(6):04014162

    Google Scholar 

  74. Yin ZY, Chang CS (2009) Microstructural modelling of stress-dependent behaviour of clay. Int J Solids Struct 46(6):1373–1388

    MATH  Google Scholar 

  75. Yin Z, Chang C, Hicher P, Karstunen M (2008) Microstructural modeling of rate-dependent behavior of soft soil. In: Proceeding of 12th IACMAG, Goa, pp 862–868

  76. Yin ZY, Chang CS, Hicher PY, Karstunen M (2009) Micromechanical analysis of kinematic hardening in natural clay. Int J Plast 25(8):1413–1435

    MATH  Google Scholar 

  77. Yin ZY, Chang CS, Karstunen M, Hicher PY (2010) An anisotropic elastic-viscoplastic model for soft clays. Int J Solids Struct 47(5):665–677

    MATH  Google Scholar 

  78. Yin ZY, Chang CS, Hicher PY (2010) Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand. Int J Solids Struct 47(14–15):1933–1951. https://doi.org/10.1016/j.ijsolstr.2010.03.028

    Article  MATH  Google Scholar 

  79. Yin ZY, Karstunen M, Chang CS, Koskinen M, Lojander M (2011) Modeling time-dependent behavior of soft sensitive clay. J Geotech Geoenviron Eng 137(11):1103–1113. https://doi.org/10.1061/(asce)gt.1943-5606.0000527

    Article  Google Scholar 

  80. Yin Z-Y, Zhao J, Hicher P-Y (2014) A micromechanics-based model for sand-silt mixtures. Int J Solids Struct 51(6):1350–1363

    Google Scholar 

  81. Yin Z-Y, Zhu Q-Y, Yin J-H, Ni Q (2014) Stress relaxation coefficient and formulation for soft soils. Géotech Lett 4:45–51

    Google Scholar 

  82. Yin Z-Y, Yin J-H, Huang H-W (2015) Rate-dependent and long-term yield stress and strength of soft Wenzhou marine clay: experiments and modeling. Mar Georesour Geotechnol 33(1):79–91

    Google Scholar 

  83. Yin Z-Y, Jin Y-F, Shen S-L, Huang H-W (2017) An efficient optimization method for identifying parameters of soft structured clay by an enhanced genetic algorithm and elastic–viscoplastic model. Acta Geotech 12(4):849–867. https://doi.org/10.1007/s11440-016-0486-0

    Article  Google Scholar 

  84. Yin Z-Y, Jin Y-F, Shen JS, Hicher P-Y (2018) Optimization techniques for identifying soil parameters in geotechnical engineering: comparative study and enhancement. Int J Numer Anal Methods Geomech 42(1):70–94. https://doi.org/10.1002/nag.2714

    Article  Google Scholar 

  85. Yu H (1998) CASM: a unified state parameter model for clay and sand. Int J Numer Anal Methods Geomech 22(8):621–653

    MATH  Google Scholar 

  86. Yuen K-V (2010) Bayesian methods for structural dynamics and civil engineering. Wiley, Hoboken

    Google Scholar 

  87. Yuen K-V (2010) Recent developments of Bayesian model class selection and applications in civil engineering. Struct Saf 32(5):338–346

    Google Scholar 

  88. Yuen KV, Mu HQ (2015) Real-time system identification: an algorithm for simultaneous model class selection and parametric identification. Comput Aided Civil Infrastruct Eng 30(10):785–801

    Google Scholar 

  89. Zhang R, Mahadevan S (2000) Model uncertainty and Bayesian updating in reliability-based inspection. Struct Saf 22(2):145–160

    Google Scholar 

  90. Zhang X, Srinivasan R, Bosch D (2009) Calibration and uncertainty analysis of the SWAT model using genetic algorithms and Bayesian model averaging. J Hydrol 374(3–4):307–317

    Google Scholar 

  91. Zhang J, Zhang LM, Tang WH (2009) Bayesian framework for characterizing geotechnical model uncertainty. J Geotech Geoenviron Eng 135(7):932–940. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000018

    Article  Google Scholar 

  92. Zhang L, Zuo Z, Ye G, Jeng D, Wang J (2013) Probabilistic parameter estimation and predictive uncertainty based on field measurements for unsaturated soil slope. Comput Geotech 48:72–81

    Google Scholar 

  93. Zhang L, Li D-Q, Tang X-S, Cao Z-J, Phoon K-K (2017) Bayesian model comparison and characterization of bivariate distribution for shear strength parameters of soil. Comput Geotech 95:110–118

    Google Scholar 

  94. Zhou W-H, Tan F, Yuen K-V (2018) Model updating and uncertainty analysis for creep behavior of soft soil. Comput Geotech 100:135–143. https://doi.org/10.1016/j.compgeo.2018.04.006

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by a RIF project (Grant No.: PolyU R5037-18F) from Research Grants Council (RGC) of Hong Kong Special Administrative Region Government (HKSARG) of China, and the National Natural Science Foundation of China (Grant No. 51579179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yu Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix—introduction of SIMSAND

Appendix—introduction of SIMSAND

The selected critical state-based sand model was SIMSAND, which has seen widely used in various studies [25, 27, 28, 65]. Accordingly, only basic principles were introduced herein for the ease of understanding. Consistent with the elasto-plastic theory, the total strain rate is composed of the elastic and plastic strain rates:

$$\delta \varepsilon_{ij} = \delta \varepsilon_{ij}^{el} + \delta \varepsilon_{ij}^{pl}$$
(16)

where \(\delta \varepsilon_{ij}\) denotes the (i, j) the total strain rate tensor and the superscripts el and pl represent the elastic and plastic components, respectively.

The nonlinear elastic behaviour is assumed to be isotropic with the Young’s modulus E:

$$\delta \varepsilon_{ij}^{el} = \frac{1 + \upsilon }{E}\delta \sigma^{\prime}_{ij} - \frac{\upsilon }{E}\delta \sigma^{\prime}_{kk} \delta_{ij}$$
(17)

where υ is Poisson’s ratio, \(\delta \sigma^{\prime}_{ij}\) is the effective stress rate tensor, and \(\delta_{ij}\) is the Kronecker delta. E is calculated by using the isotropic elastic bulk modulus K by E = 3 K(1 − 2υ), and for sand, is defined as follows:

$$K = K_{0} p_{\text{at}} \frac{{\left( {2.97 - e} \right)^{2} }}{{\left( {1 + e} \right)}}\left( {\frac{{p^{\prime}}}{{p_{\text{at}} }}} \right)^{n}$$
(18)

where K0 and n are elastic parameters, e is void ratio, p′ is the mean effective stress, and pat is the atmospheric pressure (pat = 101.325 kPa).

The yield surface for shear sliding can be expressed as follows:

$$f = \frac{q}{{p^{\prime}}} - \frac{{M_{p} \varepsilon_{d}^{p} }}{{k_{p} + \varepsilon_{d}^{p} }}{ = 0 }$$
(19)

where q is the deviatoric stress, kp is related to the plastic shear modulus, Mp is stress ratio corresponding to the peak strength calculated by the peak friction angle ϕp (Mp = 6sin(ϕp)/(3 − sin(ϕp)) in compression), and \(\varepsilon_{d}^{p}\) is the deviatoric plastic strain.

The gradient of the plastic potential surface for stress-dilatancy \(g\) can be expressed as follows:

$$\frac{\partial g}{{\partial \sigma_{ij} }} = \frac{\partial g}{{\partial p^{\prime}}}\frac{{\partial p^{\prime}}}{{\partial \sigma_{ij} }} + \frac{\partial g}{\partial q}\frac{\partial q}{{\partial \sigma_{ij} }}{\text{with }}\frac{\partial g}{{\partial p^{\prime}}} = A_{d} \left( {M_{pt} - \frac{q}{{p^{\prime}}}} \right); \, \frac{\partial g}{\partial q} = 1$$
(20)

where Ad is the stress-dilatancy parameter and Mpt can be calculated from the phase transformation friction angle ϕpt (Mpt = 6sin(ϕpt)/(3-sin(ϕpt)) in compression). The double index ij is simplified as \(1{\hat{ = }}11, \, 2{\hat{ = }}22, \, 3{\hat{ = }}33, \, 4{\hat{ = }}12, \, 5{\hat{ = }}23, \, 6{\hat{ = }}31\).

A nonlinear critical state line (CSL) formulation to guarantee the positiveness of the critical void ratio was well suited to sand modelling

$$e_{\text{c}} = e_{\text{ref}} \exp \left[ { - \lambda \left( {\frac{{p^{\prime}}}{{p_{at} }}} \right)^{\xi } } \right]$$
(21)

where ec is the critical void ratio, eref is the initial critical void ratio at p′ = 0, and λ and ξ are the parameters controlling the shape of CSL in the e-logp′ plane.

Soil density and the interlocking grains effects are introduced through the expression of the friction angle as follows:

$$\tan \phi_{p} = \left( {\frac{{e_{c} }}{e}} \right)^{{n_{p} }} \tan \phi_{u} ;\quad \tan \phi_{pt} = \left( {\frac{{e_{c} }}{e}} \right)^{{ - n_{d} }} { \tan }\phi_{\mu }$$
(22)

where the parameters np and nd are material constants and ϕμ is friction angle at critical state. The Lode angle-dependent strength and stress-dilatancy are introduced as described in Sheng et al. [53], but could also be incorporated by using the transformed stress method of Yao et al. [68,69,70, 72].

All parameters of the sand model can be divided into three groups: (1) elasticity parameters (K0, υ, and n), (2) CSL-related parameters (eref, λ, ξ, and ϕμ), and (3) interlocking-related parameters (Ad, kp, np, and nd).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, YF., Yin, ZY., Zhou, WH. et al. Identifying parameters of advanced soil models using an enhanced transitional Markov chain Monte Carlo method. Acta Geotech. 14, 1925–1947 (2019). https://doi.org/10.1007/s11440-019-00847-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-019-00847-1

Keywords

Navigation