Skip to main content
Log in

A numerical method for analyzing fault slip tendency under fluid injection with XFEM

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

We propose a numerical method for analyzing fault slip tendency under fluid injection using the extended finite element method (XFEM) both for fluid flow and poroelasticity. The fault is modeled as a zero-thickness interface, and we use a reduced model for the fluid flow in the fault to account for its hydraulic behavior. We use the rate- and state-dependent friction model as the fault friction model, and Biot’s theory of poroelasticity to study the coupling between fluid flow and mechanical deformation in the surrounding porous media. Since a fully coupled method between fluid flow and poromechanics is computationally expensive, we have investigated the use of the so-called fixed-stress split in this context. In such a scheme, the fluid flow problem is solved firstly by freezing the total means stress field, and then the results are used to solve the mechanical problem. The fixed-stress split is unconditionally stable, consistent and more accurate for a given number of iterations compared with other type of splitting strategies. In order to verify our method, some test cases are presented. For the coupling between fluid flow and poromechanics, we consider the Terzaghi Problem and the Mandel Problem, comparing our results with those of previously published works. While, for the mechanic problem, we compare the results with those obtained using the software Pylith.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Aagaard BT, Heaton TH, Hall JF (2001) Dynamic earthquake ruptures in the presence of lithostatic normal stresses: implications for friction models and heat production. Bull Seismol Soc Am 91(6):1765–1796

    Article  Google Scholar 

  2. Aagaard B, Knepley M, Williams C, Strand L, Kientz S (2015) PyLith user manual version 2.1.0, 2015

  3. Alboin C, Jaffré J, Roberts JE, Serres C (2001) Modeling fractures as interfaces for flow and transport in porous media. In: Fluid flow and transport in porous media: mathematical and numerical treatment (South Hadley, MA, 2001). Contemporary mathematics, American Mathematical Society, vol 295, no. 2002, pp 13–24

  4. Anderson EM (1905) The dynamics of faulting. Trans Edinb Geol Soc 8:387–402

    Article  Google Scholar 

  5. Anderson EM (1951) The dynamics of faulting and dyke formation with application to Britain. Oliver and Boyd, Edinburgh, p 1951

    Google Scholar 

  6. Annavarapu C, Hautefeuille M, Dolbow JE (2014) A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part I: single interface. Comput Methods Appl Mech Eng 268:417–436

    Article  MathSciNet  MATH  Google Scholar 

  7. Annavarapu C, Settgast RR, Johnson SM, Fu P, Herbold EB (2015) A weighted Nitsche stabilized method for small-sliding contact on frictional surfaces. Comput Methods Appl Mech Eng 283:763–781

    Article  MathSciNet  MATH  Google Scholar 

  8. Armero F (1999) Formulation and finite element implementation of a multiplicative model of coupled poro-plasticity at finite strains under fully saturated conditions. Comput Methods Appl Mech Eng 171(3–4):205–241

    Article  MathSciNet  MATH  Google Scholar 

  9. Armero F, Simo JC (1992) A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Int J Numer Methods Eng 35(4):737–766

    Article  MATH  Google Scholar 

  10. Becker R, Burman E, Hansbo P (2009) A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity. Comput Methods Appl Mech Eng 198(41–44):3352–3360

    Article  MathSciNet  MATH  Google Scholar 

  11. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620

    Article  MATH  Google Scholar 

  12. Berrone S, Pieraccini S, Scialò S (2013) On simulations of discrete fracture network flows with an optimization-based extended finite element method. SIAM J Sci Comput 35(2):908–935

    Article  MathSciNet  MATH  Google Scholar 

  13. Bevillon D, Masson R (2000) Stability and convergence analysis of partially coupled schemes for geomechanical-reservoir simulations. In: ECMOR VII—7th European conference on the mathematics of oil recovery, Baveno, Italy

  14. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164

    Article  MATH  Google Scholar 

  15. Both JW, Borregales M, Nordbotten JM, Kumar K, Radu FA (2017) Robust fixed stress splitting for Biot’s equations in heterogeneousmedia. Appl Math Lett 68:101–108

    Article  MathSciNet  MATH  Google Scholar 

  16. Bouchon M, Streiff D (1997) Propagation of a shear crack on a nonplanar fault: a method of calculation. Bull Seismol Soc Am 87(1):61–66

    Google Scholar 

  17. Burman E, Zunino P (2011) Numerical approximation of large contrast problems with the unfitted Nitsche method. Lect Notes Comput Sci Eng 85:227–282

    Article  MathSciNet  MATH  Google Scholar 

  18. Burman E, Zunino P (2011) Numerical approximation of large contrast problems with the unfitted Nitsche method. In: Blowey J, Jensen M (eds) Frontiers in numerical analysis—Durham 2010. Lecture notes in computational science and engineering, vol 85. Springer, Berlin, Heidelberg

    Google Scholar 

  19. Cappa F, Rutqvist J (2011) Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. Int J Greenh Gas Control 5(2):336–346

    Article  Google Scholar 

  20. Cappa F, Rutqvist J (2011) Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. Int J Greenh Gas Control 5(2):336–346

    Article  Google Scholar 

  21. Chin LY, Raghavan R, Thomas LK (1998) Fully coupled geomechanics and fluid-flow analysis of wells with stress-dependent permeability. SPE 48857 5(1):32–45

    Article  Google Scholar 

  22. Coon ET (2010) Nitsche extended finite element methods for earthquake simulation, Ph.D. thesis. Columbia University

  23. Coon ET, Shaw BE, Spiegelman M (2011) A Nitsche-extended finite element method for earthquake rupture on complex fault systems. Comput Methods Appl Mech Eng 200(2011):2859–2870

    Article  MathSciNet  MATH  Google Scholar 

  24. Coussy O (1995) Mechanics of porous continua. Wiley, Chichester

    MATH  Google Scholar 

  25. D’Angelo C, Scotti A (2011) A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM Math Model Numer Anal ESAIM: M2AN 46(2):465–489. https://doi.org/10.1051/m2an/2011148

    Article  MATH  Google Scholar 

  26. Dean RH, Gai X, Stone CM, Minkoff SE (2006) A comparison of techniques for coupling porous flow and geomechanics. SPE-79709-PA 2006 Soc Pet Eng SPE 11(01):132–140

    Google Scholar 

  27. Del Pra M, Fumagalli A, Scotti A (2017) Well posedness of fully coupled fracture/bulk Darcy flow with XFEM. SIAM J Numer Anal 55(2):785

    Article  MathSciNet  MATH  Google Scholar 

  28. Dieterich JH (1981) Constitutive properties of faults with simulated gouge. In: Mechanical behavior of crustal rocks: the Handin volume, geophysical monograph series. AGU, Washington, vol 24, pp 108–120

  29. Dieterich JH (1979) Modeling of rock friction: 1. Experimental results and constitutive equations. J Geophys Res Solid Earth 84(B5):2161–2168

    Article  Google Scholar 

  30. Dolbow J, MoÃńs N, Belytschko T (2001) An extended finite element method for modeling crack growth with frictional contact. Comput Methods Appl Mech Eng 190(51–52):6825–6846

    Article  MathSciNet  MATH  Google Scholar 

  31. Duan B, Oglesby DD (2007) Nonuniform prestress from prior earthquakes and the effect on dynamics of branched fault systems. J Geophys Res Solid Earth 112(B5):1–18

    Article  Google Scholar 

  32. Fries TP (2007) A corrected XFEM approximation without problems in blending elements. Int J Numer Methods Eng 75(5):503–532

    Article  MathSciNet  MATH  Google Scholar 

  33. Frih N, Martin V, Roberts JE, Saada A (2012) Modeling fractures as interfaces with nonmatching grids. Comput Geosci 16(4):1043–1060

    Article  Google Scholar 

  34. Fumagalli A (2012) Numerical modelling of flows in fractured porous media by the XFEM method, Ph.D. thesis. Politecnico di Milano

  35. Hansbo A, Hansbo P (2002) An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput Methods Appl Mech Eng 191(47–48):5537–5552

    Article  MathSciNet  MATH  Google Scholar 

  36. Hansbo A, Hansbo P (2002) An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput Methods Appl Mech Eng 191(47–48):5537–5552

    Article  MathSciNet  MATH  Google Scholar 

  37. https://geodynamics.org/cig/software/pylith/

  38. Jha B, Juanes R (2014) Coupled multiphase flow and poromechanics: a computational model of pore pressure effects on fault slip and earthquake triggering. Water Resour Res 50:3776–3808. https://doi.org/10.1002/2013WR015175

    Article  Google Scholar 

  39. Kame N, Yamashita T (1999) Simulation of the spontaneous growth of a dynamic crack without constraints on the crack tip path. Geophys J Int 139(2):345–358

    Article  Google Scholar 

  40. Kim J, Tchelepi H, Juanes R (2009) Stability, accuracy, and efficiency of sequential methods for coupled flow and geomechanics. SPE-119084-PA 2009 Soc Pet Eng SPE 16(02):249–262

    Google Scholar 

  41. Koller MG, Bonnet M, Madariaga R (1992) Modelling of dynamical crack propagation using time-domain boundary integral equations. Wave Motion 16(4):339–366

    Article  MATH  Google Scholar 

  42. Lackner KS (2003) A guide to CO2 sequestration. Science 300(5626):1677–1678

    Article  Google Scholar 

  43. Liu F, Borja RI (2008) A contact algorithm for frictional crack propagation with the extended finite element method. Int J Numer Methods Eng 76(10):1489–1512

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu F, Borja RI (2009) An extended finite element framework for slow-rate frictional faulting with bulk plasticity and variable friction. Int J Numer Anal Methods Geomech 33(13):1535–1560

    Article  MATH  Google Scholar 

  45. Marone C (1998) Laboratory-derived friction laws and their application to seismic faulting. Ann Rev Earth Planet Sci 26:643–696

    Article  Google Scholar 

  46. Martin V, Jaffré J, Roberts JE (2005) Modeling fractures and barriers as interfaces for flow in porous media. Soc Ind Appl Math 26(5):1667–1691

    MathSciNet  MATH  Google Scholar 

  47. Metz B, Davidson O, De Coninck H, Loos M, Meyer L (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, New York

    Google Scholar 

  48. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  MathSciNet  MATH  Google Scholar 

  49. Nitsche J, Br FI (1970) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universitt Hamburg 36:9–15

    Article  Google Scholar 

  50. Orr FM Jr (2009) Onshore geologic storage of CO2. Science 325:1656–1658

    Article  Google Scholar 

  51. Pacala S, Socolow R (2004) Stability wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972

    Article  Google Scholar 

  52. Park KC (1983) Stabilization of partitioned solution procedure for pore fluid-soil interaction analysis. Int J Numer Methods Eng 19(11):1669–1673

    Article  MATH  Google Scholar 

  53. Prévost J-H, Sukumar N (2016) Faults simulations for three-dimensional reservoir-geomechanical models with the extended finite element method. J Mech Phys Solids 86:1–18

    Article  MathSciNet  Google Scholar 

  54. Rodrigo C, Hu X, Ohm P, Adler JH, Gaspar FJ, Zikatanov LT (2017) New stabilized discretizations for poroelasticity and the Stokes’ equations, pp 1–20. arXiv:1706.05169v2

  55. Ruina A (1983) Slip instability and state variable friction laws. J Geophys Res 88(B12):10359–10370

    Article  Google Scholar 

  56. Rutqvist J, Rinaldi AP, Cappa F, Moridis GJ (2013) Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs. J Pet Sci Eng 107:31–44

    Article  Google Scholar 

  57. Samier P, Onaisi A, De Gennaro S (2008) A practical iterative scheme for coupling geomechanics with reservoir simulation. SPE-107077-PA 2008 Soc Pet Eng SPE 11(05):892–901

    Google Scholar 

  58. Scholz CH (1989) Mechanics of faulting. Ann Rev Earth Planet Sci 17:309–334

    Article  Google Scholar 

  59. Schwenck N, Flemisch B, Helmig R, Wohlmuth B (2015) Dimensionally reduced flow models in fractured porous media: crossings and boundaries. Comput Geosci 19(6):1219–1230

    Article  MathSciNet  MATH  Google Scholar 

  60. Settari A, Walters DA (2001) Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction. SPE-74142-PA 2001 Soc Pet Eng SPE 6(03):334–342

    Google Scholar 

  61. Shaw BE, Dieterich JH (2007) Probabilities for jumping fault segment stepovers. Geophys Res Lett 34(1):1–7

    Article  Google Scholar 

  62. Shaw BE (2004) Self-organizing fault systems and self-organizing elastodynamic events on them: geometry and the distribution of sizes of events. Geophys Res Lett 31(17):1–4

    Article  Google Scholar 

  63. Shaw BE, Rice JR (2000) Existence of continuum complexity in the elastodynamics of repeated fault ruptures. J Geophys Res 105(B10):23791–23810

    Article  Google Scholar 

  64. Szulczewski ML, MacMinn CW, Herzog HJ, Juanes R (2012) Lifetime of carbon capture and storage as a climate-change mitigation technology. Proc Natl Acad Sci USA 109(14):5185–5189. https://doi.org/10.1073/pnas.1115347109

    Article  Google Scholar 

  65. Tada T, Yamashita T (1997) Non-hypersingular boundary integral equations for two-dimensional non-planar crack analysis. Geophys J Int 130(2):269–282

    Article  Google Scholar 

  66. Thomas LK, Chin LY, Pierson RG, Sylte JE (2003) Coupled geomechanics and reservoir simulation. SPE J 8(4):350–358

    Article  Google Scholar 

  67. Ucar E, Berre I, Keilegavlen E (2015) Simulation of slip-induced permeability enhancement accounting for multiscale fractures. In: Proceedings: fortieth workshop on geothermal reservoir engineering

  68. Wang HF (2000) Theory of linear poroelasticity. Princeton University Press, Princeton

    Google Scholar 

  69. Zienkiewicz OC, Paul DK, Chan AHC (1988) Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems. Int J Numer Methods Eng 26(5):1039–1055

    Article  MATH  Google Scholar 

Download references

Acknowledgements

LIU Daqing was supported by MOX in the Department of Mathematics of Politecnico di Milano and also supported by the China Scholarship Council (CSC) with a scholarship. This work was done mainly under Professor Luca Formaggia and Associate Professor Anna Scotti’s guidance and their help. Luigi Vadacca also plays an important role in supporting this work. This work was implemented on the basis of the Getfem++ library, http://download.gna.org/getfem/html/homepage/. Besides, thanks Franco Dassi, Bianca Giovanardi, Alessio Fumagalli, Davide Baroli, Alberto Ferroni, Abramo Agosti, Stefano Zonca, Claudia Colciago, Mattia Penati, Francesca Mesolella, Marianna Signorini, and Daniele Rossi’s help in the process of research.

Funding

LIU Daqing has received funding by the China Scholarship Council (CSC) through a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqing Liu.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D. A numerical method for analyzing fault slip tendency under fluid injection with XFEM. Acta Geotech. 15, 325–345 (2020). https://doi.org/10.1007/s11440-019-00814-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-019-00814-w

Keywords

Navigation