Skip to main content
Log in

On specification of conditions at failure in interbedded sedimentary rock mass

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper presents a methodology for assessing the conditions at failure in interbedded sedimentary rocks. The type of rock mass considered here is representative of Carpathian Flysch Belt and has a sequence of alternating deposits of claystone and sandstone with varying thickness. The approach involves a numerical investigation at the mesoscale that allows the assessment of strength properties for different orientations of stratification. A comprehensive set of data generated through this investigation is then employed to identify material functions in a continuum framework that accounts for the effects of inherent anisotropy at the macroscale. The conditions at failure in both compression and tension regimes are addressed, and the performance of the macroscopic criterion is verified for different stress trajectories. A simplified procedure for incorporating the influence of volume fraction of constituents within the proposed macroscopic formulation is also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Amadei B (1983) Rock anisotropy and the theory of stress measurements. Springer, Berlin

    Book  Google Scholar 

  2. Ambrose J (2014) Failure of anisotropic shales under triaxial stress conditions. Ph.D. thesis, Imperial College London: Department of Earth Science and Engineering

  3. Aubertin M, Li L, Simon R (2000) A multiaxial stress criterion for short- and long-term strength of isotropic rock media. Int J Rock Mech Min Sci 37:1169–1193

    Article  Google Scholar 

  4. Barla G (1974) Rock anisotropy: theory and laboratory testing. In: Mueller L (ed) Rock mechanics. Springer, Wien, pp 131–169

    Google Scholar 

  5. Boehler JP, Sawczuk A (1977) On yielding of oriented solids. Acta Mech 27:185–204

    Article  Google Scholar 

  6. Chen CS, Pan E, Amadei B (1998) Determination of deformability and tensile strength of anisotropic rock using Brazilian tests. Int J Rock Mech Min Sci 35:43–61

    Article  Google Scholar 

  7. Duveau G, Shao JF, Henry JP (1998) Assessment of some failure criteria for strongly anisotropic geomaterials. Mech Cohesive-Frict Mater 3:1–26

    Article  Google Scholar 

  8. Hill R (1950) The mathematical theory of plasticity. Oxford University Press, Oxford

    MATH  Google Scholar 

  9. Hoek E, Brown E (1980) Empirical strength criterion for rock masses. J Geotech Eng Div ASCE 106:1013–1035

    Google Scholar 

  10. Jaeger JC (1960) Shear failure of anisotropic rocks. Geol Mag 97:65–72

    Article  Google Scholar 

  11. Liao JJ, Yang MT, Hsieh HY (1997) Direct tensile behavior of a transversely isotropic rock. Int J Rock Mech Min Sci 34:837–849

    Article  Google Scholar 

  12. Lydzba D, Pietruszczak S, Shao JF (2003) On anisotropy of stratified rocks: homogenization and fabric tensor approach. Comput Geotech 30:289–302

    Article  Google Scholar 

  13. Matthews F, Davies G, Hitchings D, Soutis C (2000) Finite element modelling of composite materials and structures. CRC Press, Boca Raton

    Book  Google Scholar 

  14. Nasseri MHB, Rao KS, Ramamurthy T (2003) Anisotropic strength and deformational behavior of Himalayan schists. Int J Rock Mech Min Sci 40:3–23

    Article  Google Scholar 

  15. Niandou H, Shao JF, Henry JP, Fourmaintraux D (1997) Laboratory investigation of the mechanical behaviour of Tournemire shale. Int J Rock Mech Min Sci 34:3–16

    Article  Google Scholar 

  16. Nova R (1980) The failure of transversely isotropic rocks in triaxial compression. Int J Rock Mech Min Sci 17:325–332

    Article  Google Scholar 

  17. Paterson MS, Wong TF (2005) Experimental rock deformation-the brittle field. Springer, Berlin

    Google Scholar 

  18. Pariseau WG (1968) Plasticity theory for anisotropic rocks and soil. In: Proceedings 10th US symposium rock mechanics, ARMA 68-0267

  19. Pietruszczak S, Mroz Z (2001) On failure criteria for anisotropic cohesive-frictional materials. Int J Numer Anal Methods Geomech 25:509–524

    Article  Google Scholar 

  20. Pietruszczak S, Lydzba D, Shao JF (2002) Modelling of inherent anisotropy in sedimentary rocks. Int J Solids Struct 39:637–648

    Article  Google Scholar 

  21. Pietruszczak S, Oulapour M (1999) Assessment of dynamic stability of foundations on saturated sandy soils. J Geotech Eng 125:576–582

    Article  Google Scholar 

  22. Saeidi O, Rasouli V, Vaneghi RG, Gholami R, Torabi SR (2014) A modified failure criterion for transversely isotropic rocks. Geosci Frontiers 5:215–225

    Article  Google Scholar 

  23. Saroglou H, Tsiambaos G (2008) A modified Hoek-Brown failure criterion for transversely isotropic intact rock. Int J Rock Mech Min Sci 45:223–234

    Article  Google Scholar 

  24. Tien YM, Kuo MC, Lu Xia-Ting YC (2017) Failure criteria for transversely isotropic rock. Rock Mech Eng 1:451–477

    Google Scholar 

  25. Tyrus JM, Gosz M, DeSantiago E (2007) A local finite element implementation for imposing periodic boundary conditions on composite micromechanical models. Int J Solids Struct 44:2972–2989

    Article  Google Scholar 

  26. Tziallas GP, Saroglou H, Tsiabaos G (2013) Determination of mechanical properties of flysch using laboratory methods. Eng Geol 166:81–89

    Article  Google Scholar 

  27. Xia Z, Zhang Y, Ellyin F (2003) A unified periodical boundary conditions for representative volume elements of composites and applications. Int J Solids Struct 40:1907–1921

    Article  Google Scholar 

  28. Zhang G (2009) Rock failure with weak planes by self-locking concept. Int J Rock Mech Min Sci 46:974–982

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pietruszczak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Przecherski, P., Pietruszczak, S. On specification of conditions at failure in interbedded sedimentary rock mass. Acta Geotech. 15, 365–374 (2020). https://doi.org/10.1007/s11440-019-00794-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-019-00794-x

Keywords

Navigation