Skip to main content
Log in

XFEM, strong discontinuities and second-order work in shear band modeling of saturated porous media

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

We investigate shear band initiation and propagation in fully saturated porous media by means of a combination of strong discontinuities (discontinuities in the displacement field) and XFEM. As a constitutive behavior of the solid phase, a Drucker–Prager model is used within a framework of non-associated plasticity to account for dilation of the sample. Strong discontinuities circumvent the difficulties which appear when trying to model shear band formation in the context of classical nonlinear continuum mechanics and when trying to resolve them with classical numerical methods like the finite element method. XFEM, on the other hand, is well suited to deal with problems where a discontinuity propagates, without the need of remeshing. The numerical results are confirmed by the application of Hill’s second-order work criterion which allows to evaluate the material point instability not only locally but also for the whole domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Agathos K, Ventura G, Chatzi E, Bordas (2017) Stable 3D XFEM/vector level sets for non-planar 3D crack propagation and comparison of enrichment schemes. Int J Numer Methods Eng 113(2):252–276

    Article  MathSciNet  Google Scholar 

  2. Armero F, Linder C (2008) New finite elements with embedded strong discontinuities in the finite deformation range. Comput Methods Appl Mech Eng 197(33–40):3138–3170

    Article  MathSciNet  Google Scholar 

  3. Borja R, Regueiro R (2001) Strain localization in frictional materials exhibiting displacement jumps. Comput Methods Appl Mech Eng 190(20–21):2555–2580

    Article  Google Scholar 

  4. Callari C, Armero F (2002) Finite element methods for the analysis of strong discontinuities in coupled poro-plastic media. Comput Methods Appl Mech Eng 191(39–40):4371–4400

    Article  MathSciNet  Google Scholar 

  5. Callari C, Armero F, Abati A (2010) Strong discontinuities in partially saturated poroplastic solids. Comput Methods Appl Mech Eng 199:1513–1535

    Article  MathSciNet  Google Scholar 

  6. Daneshyar A, Mohammadi S (2013) Strong tangential discontinuity modeling of shear bands using the extended finite element method. Comput Mech 52(5):1023–1038

    Article  MathSciNet  Google Scholar 

  7. Daouadji A, Darve F, Al Gali H et al (2011) Diffuse failure in geomaterials: experiments, theory and modelling. Int J Numer Anal Methods Geomech 35:1731–1773

    Article  Google Scholar 

  8. Darve F (1994) Stability and uniqueness in geomaterials constitutive modelling. In: Chambon R, Desrues J, Vardoulakis I (eds) Localisation and bifurcation theory for soils and rocks. A.A. Balkema, Rotterdam, pp 73–88

    Google Scholar 

  9. Darve F, Servant G, Laouafa F, Khoa HDV (2004) Failure in geomaterials: continuous and discrete analyses. Comput Methods Appl Mech Eng 193:3057–3085

    Article  Google Scholar 

  10. de Souza Neto E, Peric D, Owen D (2008) Computational methods for plasticity theory and application. Wiley, Hoboken

    Book  Google Scholar 

  11. Di Prisco C, Imposimato S (2003) Nonlocal numerical analyses of strain localisation in dense sand. Math Comput Model 37(5–6):497–506

    Article  Google Scholar 

  12. Ehlers W, Volk W (1999) Localization phenomena in liquid-saturated and empty porous solids. Transp Porous Media 34(1–3):159–177

    Article  MathSciNet  Google Scholar 

  13. Hill R (1958) A general theory of uniqueness and stability in elastic-plastic solids. J Mech Phys Solids 6:239–249

    Google Scholar 

  14. Irzal F, Remmers J, Huyghe J, de Borst R (2013) A large deformation formulation for fluid flow in a progressively fracturing porous material. Comput Methods Appl Mech Eng 256:29–37

    Article  MathSciNet  Google Scholar 

  15. Kakogiannou E, Sanavia L, Nicot F, Darve F, Schrefler B (2016) A porous media finite element approach for soil instability including the second-order work criterion. Acta Geotech 11:805–825

    Article  Google Scholar 

  16. Khoei A, Karimi K (2008) An enriched-FEM model for simulation of localization phenomenon in Cosserat continuum theory. Comput Mater Sci 44(2):733–749

    Article  Google Scholar 

  17. Laouafa F, Darve F (2002) Modelling of slope failure by a material instability mechanism. Comput Geotech 29:301–325

    Article  Google Scholar 

  18. Larsson J, Larsson R (2000) Finite element analysis of localization of deformation and fluid pressure in an elastoplastic porous medium. Int J Solids Struct 37(48–50):7231–7257

    Article  Google Scholar 

  19. Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media. Wiley, Chichester

    MATH  Google Scholar 

  20. Lignon S, Laouafa F, Prunier F et al (2009) Hydro-mechanical modelling of landslides with a material instability criterion. Geotechnique 59:513–524

    Article  Google Scholar 

  21. Liu X, Cheng XH, Scarpas A, Blaauwendraad J (2005) Numerical modelling of nonlinear response of soil. Part 1: constitutive model. Int J Solids Struct 42(7):1849–1881

    Article  Google Scholar 

  22. Mikaeili E, Liu P (2018) Numerical modeling of shear band propagation in dilatant porous plastic materials by XFEM. Theor Appl Fract Mech 95:164–176

    Article  Google Scholar 

  23. Moes N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833

    Article  Google Scholar 

  24. Mohammadnejad T, Andrade J (2016) Numerical modeling of hydraulic fracture propagation, closure and reopening using XFEM with application to in situ stress estimation. Int J Numer Anal Methods Geomech 40(15):2033–2060

    Article  Google Scholar 

  25. Mokni M (1992) Relations entre deformations en masse et deformations localisees dans les matériaux granulaires. In: Ph. D. thesis, Grenoble France

  26. Nguyen Vinh Phu, Lian Haojie, Rabczuk Timon, Bordas S (2017) Modelling hydraulic fractures in porous media using flow cohesive interface elements. Eng Geol 225:68–82

    Article  Google Scholar 

  27. Nicot F, Daouadji A, Laouafa F (2011) Second-order work, kinetic energy and diffuse failure in granular materials. Granul Matter 13:19–28

    Article  Google Scholar 

  28. Oliver J (1995) Continuum modelling of strong discontinuities in solid mechanics using damage models. Comput Mech 17(1–2):49–61

    Article  Google Scholar 

  29. Prevost J, Sukumar N (2016) Faults simulation for three-dimensional reservoirs-geomechanical models with the extended finite element method. J Mech Phys Solids 86:1–18

    Article  MathSciNet  Google Scholar 

  30. Rabczuk T, Samaniego E (2008) Discontinuous modelling of shear bands using adaptive meshfree methods. Comput Methods Appl Mech Eng 197:641–658

    Article  MathSciNet  Google Scholar 

  31. Rabczuk T, Areias P, Belytschko T (2007) A simplified mesh-free method for shear bands with cohesive surfaces. Int J Numer Methods Eng 69:993–1021

    Article  Google Scholar 

  32. Regueiro R, Borja R (2001) Plane strain finite element analysis of pressure sensitive plasticity with strong discontinuity. Int J Solids Struct 38(21):3647–3672

    Article  Google Scholar 

  33. Rudnicki J, Rice J (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23(6):371–394

    Article  Google Scholar 

  34. Schrefler B, Sanavia L, Majorana C (1996) A multiphase medium model for localization and post-localization simulation in geomaterials. Mech Cohes Frict Mater 1(1):95–114

    Article  Google Scholar 

  35. Schrefler BA, Secchi S, Simoni L (2006) On adaptive refinement techniques in multi-field problems including cohesive fracture. Comput Methods Appl Mech Eng 195:444–461

    Article  Google Scholar 

  36. Shuttle D, Smith I (1991) Localization in presence of excess pore water pressure. Comput Geotech 9(1–2):87–99

    Google Scholar 

  37. Simo J, Oliver J, Armero F (1993) An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput Mech 12(5):277–296

    Article  MathSciNet  Google Scholar 

  38. Steinmann P (1999) A finite element formulation for strong discontinuities in fluid-saturated porous media. Mech Cohes Frict Mater 4(2):133–152

    Article  Google Scholar 

  39. Sukumar N, Prevost J (2003) Modeling quasi-static crack growth with the extended finite element method Part I: computer implementation. Int J Solids Struct 40(26):7513–7537

    Article  Google Scholar 

  40. Wang Y, Waisman H (2017) Material-dependent crack-tip enrichment functions in XFEM for modeling interfacial cracks in bimaterials. Int J Numer Methods Eng 112(11):1495–1518

    Article  MathSciNet  Google Scholar 

  41. Wells G, Sluys L (2001) A new method for modelling cohesive cracks using finite elements. Int J Numer Methods Eng 50(12):2667–2682

    Article  Google Scholar 

  42. Zhang H, Schrefler B (2000) Gradient-dependent plasticity model and dynamic strain localization analysis of saturated and partially saturated porous media: one dimensional model. Eur J Mech A Solids 19(3):503–524

    Article  Google Scholar 

  43. Zhang HW, Sanavia L, Schrefler B (1999) An internal length scale in dynamic strain localization of multiphase porous media. Mech Cohes Frict Mater 4(5):443–460

    Article  Google Scholar 

  44. Zienkiewicz OC, Chan A, Pastor M, Schrefler B, Shiomi T (1999) Computational geomechanics with special reference to earthquake engineering. Wiley, Hoboken

    MATH  Google Scholar 

Download references

Acknowledgements

Ehsan Mikaeili acknowledges the Sharif University of Technology, department of civil engineering for the general assistance and consultation. B. A. Schrefler acknowledges the support of the Technische Universität München—Institute for Advanced Study, funded by the German Excellence Initiative and the European Union Seventh Framework Program under Grant Agreement No 291763.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Schrefler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikaeili, E., Schrefler, B. XFEM, strong discontinuities and second-order work in shear band modeling of saturated porous media. Acta Geotech. 13, 1249–1264 (2018). https://doi.org/10.1007/s11440-018-0734-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-018-0734-6

Keywords

Navigation